,

Mathematik für Ökonomen I

Differentialrechnung und Integralrechnung von Funktionen einer Veränderlichen

Paperback Duits 1974 2e druk 9783540062523
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

Im ersten Kapitel haben wir den Funktionsbegriff und die wichtigen Begriffe des Grenzwertes und der Stetigkeit einer Funk­ tion eingeführt. Will man die Anwendungsmöglichkeiten des Funk­ tionsbegriffs erweitern und seine Aussagekraft vertiefen, so müssen wir das Verhalten der Funktionen näher untersuchen. Wir müssen vor allem die Art und Weise, wie sich der Funktionswert f(x) ändert, wenn x einen bestimmten Bereich durchläuft, näher be­ trachten. Besondere Bedeutung kommt der durchschnittlichen Än­ derung einer Funktion in einem bestimmten Intervall zu. Unter der durchschnittlichen Änderung der Funktion f im Intervall x :::; ~ :::; x + Li x verstehen wir den Quotienten f(x + Li x) - f(x) Lif(x) Lix ~. Läßt man die Intervallänge Lix gegen 0 streben, so strebt unter .. d d D h h . Lif(x) . b· U mstan en er ure se mttswert ~ gegen emen estImmten Grenzwert. Derartige Grenzwerte, die in der Mathematik und in der Wirtschaftswissenschaft große Bedeutung besitzen, bilden den Ge­ genstand dieses Kapitels. 2.2 Der Differentialquotient 2.2.1 Definition des Differentialquotienten Die Funktion f sei im Intervall a:::; x:::; b definiert. Sind x und x + Li x zwei Punkte des Intervalls, so betrachten wir zunächst die •• 00 Lif(x) f(x + Lix) - f(x) durchschmtthche Anderung ~ = Lix von f 1m Intervall x:::;~:::;x+Lix (bzw. x+Lix:::;~:::;x). Lif(x) Man nennt auch einen DijJerenzenquotienten von f an der Stelle x. Lix 67 Die geometrische Bedeutung des Differenzenquotienten läßt sich aus der Abb. 46 leicht ablesen. Es gilt: tgtp = Af(x) .

Specificaties

ISBN13:9783540062523
Taal:Duits
Bindwijze:paperback
Aantal pagina's:232
Uitgever:Springer Berlin Heidelberg
Druk:2

Lezersrecensies

Wees de eerste die een lezersrecensie schrijft!

Inhoudsopgave

1. Zahlen, Mengen und Funktionen.- 1.1 Zahlen.- 1.2 Mengen.- 1.3 Funktionen.- 1.4 Funktionen in der Wirtschaftswissenschaft.- 1.5 Grenzwerte von Zahlenfolgen.- 1.6 Grenzwerte von Funktionen.- 1.7 Stetige Funktionen.- 1.8 Anhang zum 1. Kapitel.- 2. Differentialrechnung.- 2.1 Einleitung.- 2.2 Der Differentialquotient.- 2.3 Differentiationsregeln.- 2.4 Die Exponentialfunktion und die Logarithmusfunktion.- 2.5 Wachstumsraten.- 2.6 Die logarithmische Ableitung und die Elastizität einer Funktion.- 2.7 Die trigonometrischen Funktionen.- 2.8 Die zyklometrischen Funktionen.- 2.9 Hyperbolische Funktionen.- 2.10 Der Mittelwertsatz der Differentialrechnung.- 2.11 Das Differential.- 2.12 Höhere Ableitungen.- 2.13 Konvexe und konkave Funktionen.- 3. Diskussion von Funktionen.- 3.1 Allgemeine Kurvendiskussion.- 3.2 Ökonomische Beispiele zur Optimierung.- 3.3 Spezielle Funktionen in der Ökonomie.- 4. Die Integralrechnung.- 4.1 Der Begriff des bestimmten Integrals.- 4.2 Mittelwertsätze der Integralrechnung.- 4.3 Das unbestimmte Integral.- 4.4 Der Hauptsatz der Integralrechnung.- 4.5 Die Substitutionsmethode.- 4.6 Die Methode der partiellen Integration.- 4.7 Die Integration rationaler Funktionen.- 4.8 Uneigentliche Integrale.- 4.9 Einige ökonomische Anwendungen der Integralrechnung.- a) Lineare Nachfrage.- b) Nachfragefunktion mit konstanter Elastizität.- 5. Reihen.- 5.1 Begriffe und Definitionen.- 5.2 Reihen mit positiven Gliedern.- 5.3 Absolute und bedingte Konvergenz.- 5.4 Ökonomische Beispiele.- 5.5 Gleichmäßige Konvergenz.- 5.6 Potenzreihen.- 5.7 Taylorsche Formeln und Taylorsche Reihen.- 5.8 Die Berührung von Kurven und ein Kriterium für Extremalstellen.- 5.9 Unbestimmte Ausdrücke (die L’Hospitalsche Regel).- Namen- und Sachverzeichnis.

Managementboek Top 100

Rubrieken

    Personen

      Trefwoorden

        Mathematik für Ökonomen I