Domain Adaptation in Computer Vision Applications

Gebonden Engels 2017 9783319583464
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

This comprehensive text/reference presents a broad review of diverse domain adaptation (DA) methods for machine learning, with a focus on solutions for visual applications. The book collects together solutions and perspectives proposed by an international selection of pre-eminent experts in the field, addressing not only classical image categorization, but also other computer vision tasks such as detection, segmentation and visual attributes.

Topics and features: surveys the complete field of visual DA, including shallow methods designed for homogeneous and heterogeneous data as well as deep architectures; presents a positioning of the dataset bias in the CNN-based feature arena; proposes detailed analyses of popular shallow methods that addresses landmark data selection, kernel embedding, feature alignment, joint feature transformation and classifier adaptation, or the case of limited access to the source data; discusses more recent deep DA methods, including discrepancy-based adaptation networks and adversarial discriminative DA models; addresses domain adaptation problems beyond image categorization, such as a Fisher encoding adaptation for vehicle re-identification, semantic segmentation and detection trained on synthetic images, and domain generalization for semantic part detection; describes a multi-source domain generalization technique for visual attributes and a unifying framework for multi-domain and multi-task learning.

This authoritative volume will be of great interest to a broad audience ranging from researchers and practitioners, to students involved in computer vision, pattern recognition and machine learning.

Specificaties

ISBN13:9783319583464
Taal:Engels
Bindwijze:gebonden
Uitgever:Springer International Publishing

Lezersrecensies

Wees de eerste die een lezersrecensie schrijft!

Inhoudsopgave

<p>1. A Comprehensive Survey on Domain Adaptation for Visual Applications<br/> Gabriela Csurka</p> <p>2. A Deeper Look at Dataset Bias<br/> Tatiana Tommasi, Novi Patricia, Barbara Caputo, and Tinne Tuytelaars</p> <p>Part I: Shallow Domain Adaptation Methods</p> <p>3. Geodesic Flow Kernel and Landmarks: Kernel Methods for Unsupervised Domain Adaptation<br/> Boqing Gong, Kristen Grauman, and Fei Sha</p> <p>4. Unsupervised Domain Adaptation based on Subspace Alignment<br/> Basura Fernando, Rahaf Aljundi, Rémi Emonet, Amaury Harbard, Marc Sebban, and Tinne Tuytelaars</p> <p>5. Learning Domain Invariant Embeddings by Matching Distributions<br/> Mahsa Baktashmotlagh, Mehrtash Harandi, and Mathieu Salzmann</p> 6. Adaptive Transductive Transfer Machines: A Pipeline for Unsupervised Domain Adaptation<br/> Nazli Farajidavar, Teofilo de Campos, and Josef Kittler<p></p> <p>7. What To Do When the Access to the Source Data is Constrained?<br/> Gabriela Csurka, Boris Chidlovskii, and Stéphane Clinchant</p> <p>Part II: Deep Domain Adaptation Methods</p> <p>8. Correlation Alignment for Unsupervised Domain Adaptation<br/> Baochen Sun, Jiashi Feng, and Kate Saenko</p> <p>9. Simultaneous Deep Transfer Across Domains and Tasks<br/> Judy Hoffman, Eric Tzeng, Trevor Darrell, and Kate Saenko</p> <p>10. Domain-Adversarial Training of Neural Networks<br/> Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, Mario Marchand, and Victor Lempitsky</p> <p>Part III: Beyond Image Classification</p> <p>11. Unsupervised Fisher Vector Adaptation for Re-Identification<br/> Usman Tariq, Jose A. Rodriguez-Serrano, and Florent Perronnin</p> <p>12. Semantic Segmentation of Urban Scenes via Domain Adaptation of SYNTHIA<br/> German Ros, Laura Sellart, Gabriel Villalonga, Elias Maidanik, Francisco Molero, Marc Garcia, Adriana Cedeño, Francisco Perez, Didier Ramirez, Eduardo Escobar, Jose Luis Gomez, David Vazquez, and Antonio M. Lopez</p> <p>13. From Virtual to Real World Visual Perception using Domain Adaptation – The DPM as Example<br/> Antonio M. López, Jiaolong Xu, José L. Gómez, David Vázquez, and Germán Ros</p> <p>14. Generalizing Semantic Part Detectors Across Domains<br/> David Novotny, Diane Larlus, and Andrea Vedaldi</p> <p>Part IV: Beyond Domain Adaptation: Unifying Perspectives</p> 15. A Multi-Source Domain Generalization Approach to Visual Attribute Detection<br/> Chuang Gan, Tianbao Yang, and Boqing Gong<p></p> <p>16. Unifying Multi-Domain Multi-Task Learning: Tensor and Neural Network Perspectives<br/> Yongxin Yang and Timothy M. Hospedales</p>

Managementboek Top 100

Rubrieken

    Personen

      Trefwoorden

        Domain Adaptation in Computer Vision Applications