Low-Rank and Sparse Modeling for Visual Analysis

Gebonden Engels 2014 2014e druk 9783319119991
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

This book provides a view of low-rank and sparse computing, especially approximation, recovery, representation, scaling, coding, embedding and learning among unconstrained visual data. The book includes chapters covering multiple emerging topics in this new field. It links multiple popular research fields in Human-Centered Computing, Social Media, Image Classification, Pattern Recognition, Computer Vision, Big Data, and Human-Computer Interaction. Contains an overview of the low-rank and sparse modeling techniques for visual analysis by examining both theoretical analysis and real-world applications.

Specificaties

ISBN13:9783319119991
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:236
Uitgever:Springer International Publishing
Druk:2014

Lezersrecensies

Wees de eerste die een lezersrecensie schrijft!

Inhoudsopgave

Nonlinearly Structured Low-Rank Approximation.- Latent Low-Rank Representation.- Scalable Low-Rank Representation.- Low-Rank and Sparse Dictionary Learning.- Low-Rank Transfer Learning.- Sparse Manifold Subspace Learning.- Low Rank Tensor Manifold Learning.- Low-Rank and Sparse Multi-Task Learning.- Low-Rank Outlier Detection.- Low-Rank Online Metric Learning.

Managementboek Top 100

Rubrieken

    Personen

      Trefwoorden

        Low-Rank and Sparse Modeling for Visual Analysis