1 Grade Data Analysis — A First Look.- 1.1 “Questions” from clients.- 1.2 About “Grade Models and Methods for Data Analysis”.- 1.3 Addressing the practitioner.- 1.4 Addressing the theorist.- 1.5 Regarding the analysis of data populations.- 1.6 Overview of Grade Data Analysis algorithms.- 1.7 Returning to the clients from the first page.- 1.8 Conclusion — Chapter 1.- 2 The Grade Approach.- 2.1 Introduction.- 2.2 Part 1: Quick start to the understanding of grade concepts.- 2.2.1 A simplified case of the grade approach.- 2.2.2 Examples of data distribution sources.- 2.3 Steps to making a concentration curve.- 2.4 Quick Start summary.- 2.5 Preview of Part 2, and suggestions before your eventual study of the multivariate material.- 2.6 Part 2: Understanding concentration curves.- 2.6.1 Introduction.- 2.6.2 Two identical distributions.- 2.6.3 Cylinder with partitions: cells of equal length, gas in equal proportions.- 2.6.4 Constructing a concentration curve from individual category segments.- 2.6.5 When proportions do not correspond between distributions.- 2.6.6 Using the concentration curve to introduce the concept of overrepresentation.- 2.6.7 Overrepresentation.- 2.6.8 When we manipulate both distributions: gas (unequal proportions) and cylinder (unequal cell sizes).- 2.6.9 Example application — Winners versus losers in the car sales market.- 2.6.10 Example application — Historic perspective (then vsnow) of car sales market.- 2.6.11 Reordering (prioritizing) categories and an introduction to the maximal concentration index.- 2.6.12 Part 2 summary.- 2.7 Chapter Summary.- 3 Univariate Lilliputian Model I.- 3.1 Introduction.- 3.2 Lilliputian variables and their basic parameters.- 3.2.1 The cdf of a Lilliputian variable.- 3.2.2 The expectation of a Lilliputian variable and the index ar.- 3.2.3 The first moment Lilliputian variable, its variance, and the Gini Index.- 3.2.4 Discontinuity measures.- 3.3 The main equivalence relation which creates the Univariate Lilliputian Model.- 3.3.1 Preliminary definitions and examples.- 3.3.2 Equivalent pairs of random variables.- 3.3.3 Grade transformations of univariate distributions.- 3.4 Grade parameters.- 3.4.1 The parameter ar.- 3.4.2 Normal concentration pattern.- 3.4.3 Likelihood ratio and local concentration.- 3.5 Appendix.- 3.5.1 Monotone grade probability transition function.- 3.5.2 Properties of concentration measures.- 4 Univariate Lilliputian Model II.- 4.1 Introduction.- 4.2 Lorenz Curve and Gini Index.- 4.2.1 Ratio variables and related concentration curves.- 4.2.2 First moment distribution and Lorenz curve.- 4.2.3 Lorenz Curves with horizontal and/or vertical segments.- 4.2.4 The variable called overrepresentation and its Lorenz curve.- 4.2.5 Diagram of over- and underrepresentation.- 4.2.6 Lorenz Curve and Gini Index for density transform of categorical variables.- 4.3 Order oriented concentration curves.- 4.3.1 Basic definitions.- 4.3.2 The maximal concentration curve and the maximal concentration index.- 4.3.3 Order oriented Lorenz Curve and inequality (Gini) index.- 4.3.4 Order oriented Lorenz Curve and Gini Index for the density transforms of categorical variables.- 4.3.5 Link with the two-class discriminant analysis.- 4.4 Dual concentration curve.- 4.4.1 Definition of the dual concentration curve and dual Lorenz curve.- 4.4.2 Random variable dual to a ratio variable.- 4.4.3 Dual links between overrepresentation and underrepresentation.- 4.4.4 Towards advantage problems in interpopulation comparisons.- 4.5 Appendix.- 4.5.1 Measurement scales.- 4.5.2 Supplement to Section 4.2 (the inequality measures).- 4.5.3 Supplement to Section 4.3.2 (the maximal concentration measures).- 4.5.4 Supplement to Section 4.3.3 (the ordered Lorenz Curve and Gini Index).- 4.5.5 Supplement to Section 4.4.2 (the random variable dual to a ratio variable).- 4.5.6 Bibliographical remarks to Chapter 3 and 4.- 5 Asymmetry and the inverse concentration set.- 5.1 Introduction.- 5.2 Concentration curves with a common value of the concentration index.- 5.3 Links between asymmetry and opposite orderings.- 5.4 Asymmetry in the Univariate Lilliputian Model.- 5.4.1 Asymmetry curves.- 5.4.2 Asymmetry index.- 5.4.3 Families of curves with special properties.- 5.5 Relative asymmetry.- 5.5.1 Links with measurement scales.- 5.5.2 Relative asymmetry measures.- 5.5.3 Examples.- 5.6 Appendix.- 5.6.1 The inverse concentration set.- 5.6.2 Asymmetry indices.- 5.6.3 Bibliographical remarks.- 6 Discretization and regularity.- 6.1 Introduction.- 6.2 Discretization framework.- 6.3 Optimal discretization for a given number of categories.- 6.4 Ideally regular concentration curves.- 6.5 On the determination of the number of categories.- 6.6 A parametric family of ideally regular Lilliputian curves.- 6.7 Appendix.- 6.7.1 Optimal discretization.- 6.7.2 Algorithm of optimal discretization.- 6.7.3 Bibliographical remarks.- 7 Preliminary concepts of bivariate dependence.- 7.1 Introduction.- 7.2 Contingency tables with m rows and k columns.- 7.3 Quadrant dependence.- 7.4 Matrices of ar’s for pairs of profilesTotal positivity of order two.- 7.5 The regression function.- 7.6 The monotone dependence function and the Gini Index.- 7.7 Appendix — Bibliographical remarks.- 8 Dependence Lilliputian Model.- 8.1 Introduction.- 8.2 Grade bivariate distributions and overrepresentation maps for probability tables.- 8.3 Lilliputian surfaces with uniform marginal distributions.- 8.4 Spearman’s rho and Kendall’s tau expressed by volumes and masses in the unit cube.- 8.5 Grade regression functions and related measures.- 8.6 On permuting rows and columns of m × k probability tables.- 8.6.1 Maximal grade correlation.- 8.6.2 Ordered Gini indices for marginal density transforms.- 8.6.3 Maximal Kendall’s tau.- 8.7 The hinged sequences of rows and columns.- 8.8 Appendix: Bibliographical remarks.- 9 Grade Correspondence Analysis and outlier detection.- 9.1 Introduction.- 9.2 Algorithms of GCA.- 9.2.1 GCA algorithm based on Spearman’s p*.- 9.2.2 GUA algorithm based on Kendall’s T.- 9.2.3 GCA algorithm based on Tsgn.- 9.2.4 GCA and a mixture of permuted discretized binormal tables.- 9.2.5 Folds.- 9.3 Algorithm for Smooth Grade Correspondence Analysis (SGCA).- 9.4 Examples of GCA and SGCA results.- 9.4.1 A mixture of binormals.- 9.4.2 BRIT7×7 and CARS16×16.- 9.5 Detection of rows and columns outlying the main trend.- 9.5.1 Scatterplots for rows and for columns.- 9.5.2 Measures of departure from TP2.- 9.5.3 Rejecting outlying rows and columns.- 9.6 Appendix — Bibliographical remarks.- 10 Cluster analysis based on GCA.- 10.1 Introduction.- 10.2 Single and double grade clustering.- 10.3 Optimal grade clustering.- 10.4 Cluster analysis in the detection of mixtures.- 10.4.1 Straight and reverse regular structures.- 10.4.2 Survey of small business servicing firms.- 10.4.3 SGCL results for the whole sample.- 10.4.4 SGCL results for the particular branches.- 10.4.5 Some final remarks.- 10.5 Cluster analysis and the detection of an imprecisely defined trend.- 10.5.1 The use of sources of capital by retail trade firms in Poland.- 10.5.2 Typology of firms for the pooled, three-year data.- 10.5.3 Firm typologies for annual data.- 10.5.4 Relationship between the generated firm typology and the firm profitability.- 10.6 On GCCA application to various data sets.- 10.7 Appendix.- 10.7.1 An algorithm for optimal clustering.- 10.7.2 Bibliographical remarks.- 11 Regularity and the number of clusters.- 11.1 Introduction.- 11.2 Generalization of the parabola family from the 𝕌𝕃𝕄.- 11.3 The ideal regularity of two-way data tables.- 11.4 Regularity and cluster detection.- 11.5 Cluster detection in finite data tables.- 11.6 Appendix — Bibliographical remarks.- 12 Grade approach to the analysis of finite data matrices.- 12.1 Introduction.- 12.2 Insight Examples.- 12.2.1 The Competitors-Judges Data (C/J Example).- 12.2.2 The Annual Bonus Data (A/B Example).- 12.3 Applicability of GCA.- 12.4 A revisit of the univariate data.- 12.5 Finite multivariate datasets and related inequality measures.- 12.5.1 Finite data tables and their grade regression functions.- 12.5.2 Lorenz Surfaces.- 12.5.3 Global differentiation and its decomposition.- 12.5.4 Decomposition of Difx.- 12.6 Transformations of variables.- 12.7 Detection of outliers and decomposition of a dataset.- 13 Inequality measures for multivariate distributions.- 13.1 Introduction.- 13.2 Inequality measures for multivariate distributions with finite sets of records.- 13.3 Inequality measures for multivariate distributions with nonfinite sets of records.- 13.4 Inequality measures for continuous bivariate distributions.- 13.4.1 A pair of independent uniform Lilliputian variables.- 13.4.2 A pair of functionally dependent Lilliputian variables.- 13.4.3 A family of TP2 distributions from 𝔹𝕃𝕄.- 13.4.4 Grade binormal distributions.- 13.5 Inequality measures for grade multinormal distributions.- 13.6 Inequality measures for the Moran distributions.- 13.7 Appendix — link between grade similarity and dissimilarity of two regularly dependent random variables.- 14 Case studies with multivariate data.- 14.1 Introduction.- 14.2 Case Study 1 — Main Trend of Questionnaire Data.- 14.2.1 The Questionnaire.- 14.2.2 The goal of the analysis.- 14.2.3 The Overrepresentation Map for Main Trend in dataset TOTAL.- 14.2.4 Interpretation of the results (with some general hints).- 14.3 Case Study 1 — Decomposition of the dataset into regular subpopulations.- 14.3.1 The Overrepresentation Maps for FIT-MT and OUT-MT.- 14.3.2 The grade strip charts for FIT-MT and OUT-MT.- 14.3.3 Two-way ordered clustering.- 14.4 Case Study 2 — Analysis of Engineering Data (Strength of Concrete).- 14.4.1 The variables.- 14.4.2 The goal of the analysis.- 14.4.3 The Overrepresentation Map for Main Trend in the dataset TOTAL.- 14.5 Case Study 2 — Decomposition of concrete mixtures into FITMT and OUT-MT.- 14.5.1 The Overrepresentation Maps for FIT-MT and OUT-MT.- 14.5.2 The grade strip charts for FIT-MT and OUT-MT.- 14.6 Final remarks for the two case studies.- 14.7 Appendix.- 14.7.1 Case Study 1 — further details of the analysis.- 14.7.2 Case Study 2 — further details of the analysis.- 14.7.3 Bibliographical remarks.- 15 The GradeStat program.- 15.1 Introduction.- 15.2 Main implemented features.- 15.2.1 Data overview.- 15.2.2 Charts.- 15.2.3 Preprocessing.- 15.2.4 Ordering.- 15.2.5 Clustering.- References.