Functional Metamaterials and Metadevices

Gebonden Engels 2017 9783319660431
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

To meet the demands of students, scientists and engineers for a systematic reference source, this book introduces, comprehensively and in a single voice, research and development progress in emerging metamaterials and derived functional metadevices. Coverage includes electromagnetic, optical, acoustic, thermal, and mechanical metamaterials and related metadevices. Metamaterials are artificially engineered composites with designed properties beyond those attainable in nature and with applications in all aspects of materials science. From spatially tailored dielectrics to tunable, dynamic materials properties and unique nonlinear behavior, metamaterial systems have demonstrated tremendous flexibility and functionality in electromagnetic, optical, acoustic, thermal, and mechanical engineering.  Furthermore, the field of metamaterials has been extended from the mere pursuit of various exotic properties towards the realization of practical devices, leading to the concepts of dynamically-reconfigurable metadevices and functional metasurfaces. The book explores the fundamental physics, design, and engineering aspects, as well as the full array of state-of-the-art applications to electronics, telecommunications, antennas, and energy harvesting. Future challenges and potential in regard to design, modeling and fabrication are also addressed.

Specificaties

ISBN13:9783319660431
Taal:Engels
Bindwijze:gebonden
Uitgever:Springer International Publishing

Lezersrecensies

Wees de eerste die een lezersrecensie schrijft!

Inhoudsopgave

<p>Preface</p> <p>1 Concepts from metamaterials to metadevices </p> <p>1.1 Rationale for metamaterials exploration</p> <p>1.2 Classification of metamaterials</p> <p>1.3 Evolution of metamaterials</p> <p>1.4 Emerging functional metadevices</p> <p>1.4.1 Reconfigurable and tunable metadevices</p> <p>1.4.2 Electro-optical metadevices</p> <p>1.4.3 Liquid-crystal metadevices</p> <p>1.4.4 Phase-change metadevices</p> <p>1.4.5 Superconducting metadevices</p> <p>1.4.6 Ultrafast photonic metadevices</p> <p>1.4.7 Nonlinear metadevices with varactors</p> 1.4.8 Metadevices driven by electromagnetic forces<p></p> <p>1.4.9 Acoustic metadevices</p> <p>2 Design and fabrication of metamaterials and metadevices&nbsp; </p> <p>2.1 Common design Approaches for metamaterials</p> <p>2.1.1 Resonant approach</p> <p>2.1.2 Transmission line Approach</p> <p>2.1.3 Hybrid Approach </p> <p>2.2 General tuning methods for metadevices</p> <p>2.3 Fabrication technology</p> <p>2.3.1 Photolithography&lt; </p><p>2.3.2 Shadow mask lithography</p> <p>2.3.3 Soft lithography</p> <p>2.3.4 Electron beam lithography</p> <p>2.3.5 3D metamaterial fabrication techniques</p> <p>2.4 Tuning techniques</p> <p>2.4.1 Mechanical tuning</p> <p>2.4.2 Electromechanical displacements</p> <p>2.4.3 Lattice displacement</p> <p>2.4.4 Thermal stimulation</p> <p>2.4.5 Material tuning&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </p> <p>3 Electromagnetic metamaterials and metadevices </p> <p>3.1 Fundamental theory of electromagnetic metamaterials</p> <p>3.2 Single negative metamaterials</p> <p>3.2.1 Metamaterials with negative effective permittivity in the microwave regime</p> <p>3.2.2 Metamaterials with negative effective permeability in the microwave regime</p> <p>3.3 Double Negative Metamaterials</p> <p>3.4 Zero index metamaterials</p> 3.5 Electromagnetic band gap metamaterials<p></p> <p>3.5.1 Types of EBG structures</p> <p>3.5.2 Numerical modeling of EBG</p> <p>3.5.3 EBG applications</p> <p>3.6 Bi-isotropic and bi-anisotropic metamaterials</p> <p>3.7 Microwave metamaterial-inspired metadevices</p> <p>4 Terahertz metamaterials and metadevices</p> <p>4.1 Introduction</p> <p>4.2 Passive-type terahertz metamaterials </p> <p>4.2.1 Terahertz metamaterials with electric responses</p> <p>4.2.2 Terahertz metamaterials with magnetic responses</p> <p>4.2.3 Terahertz metamaterials with negative refractive indices</p> <p>4.2.4 Broadband terahertz metamaterials </p><p>4.3 Active-type terahertz metamaterials</p> <p>4.3.1 Electrically tunable THz metamaterials</p> <p>4.3.2 Optically tunable THz metamaterials</p> <p>4.3.3 Mechanically tunable THz metamaterials</p> <p>4.4 Flexible THz metamaterial sensors</p> <p>5 Photonic metamaterials and metadevices </p> <p>5.1 Introduction</p> <p>5.2 Photonic crystals</p> <p>5.2.1 A historical account</p> <p>5.2.2 Construction of photonic crystals</p> <p>5.2.3 Applications of photonic crystals</p> <p>5.3 Metamaterials designed through transformation optics</p> <p>5.3.1 Metamaterials mimicking celestial mechanics</p> 5.3.2 Metamaterials gradient index lensing<p></p> <p>5.3.3 Battlefield applications</p> <p>5.4 Hyperbolic metamaterials</p> <p>5.4.1 Hyperbolic media in retrospect</p> <p>5.4.2 Design and building materials</p> <p>5.4.3 Photonic hypercrystals</p> <p>5.4.4 Applications of hyperbolic metamaterials</p> <p>5.4.4.1 High-resolution imaging and lithography</p> <p>5.4.4.2 Spontaneous emission engineering</p> <p>5.4.4.3 Thermal emission engineering</p> <p>6 Chiral metamaterials and metadevices</p> <p>6.1 Historical perspective </p> <p>6.2 Chirality parameter and ellipticity</p> 6.3 Typical chiral metamaterials<p></p> <p>6.3.1 Chiral metamaterials with negative refractive index</p> <p>6.3.2 3D chiral metamaterials</p> <p>6.3.3 Self-assembled chiral metamaterials</p> <p>6.3.4 Gyroid metamaterials</p> <p>6.3.5 Nonlinear chiral metamaterials</p> <p>6.4 Chiroptical effects</p> <p>6.4.1. Extrinsic chirality</p> <p>6.4.2 Superchiral fields</p> <p>6.5 Typical applications of chiral metamaterials </p> <p>6.5.1 Chiral metamaterial sensors</p> <p>6.5.2 Nonlinear optics in chiral metamaterials</p> <p>6.5.3 Chiral light-matter interactions</p> <p>6.5.4 Active chiral metamaterials</p> 7 Plasmonic metamaterials and metasurfaces<p></p> <p>7.1 Plasmonic meta-atoms and their interactions</p> <p>7.2 Plasmonic metamaterials implementing negative refraction and negative refractive index</p> <p>7.3 Plasmonic metasurfaces</p> <p>7.4 Graphene-based plasmonic metamaterials</p> <p>7.5 Self-assembled plasmonic metamaterials</p> <p>7.6 Application perspective</p> <p>7.6.1 Optical nanocircuits and nanoantennas</p> <p>7.6.1.1 Optical nanocircuits</p> <p>7.6.1.2 Optical nanoantennas</p> <p>7.6.2 Functional metasurfaces</p> <p>7.6.3 Plasmonic metamaterials for sensing</p> <p>8 Metamaterials-inspired frequency selective surfaces</p> <p>8.1 Evolution of frequency selective surfaces</p> <p>8.2 Design of metamaterial-based miniaturized-element frequency-selective surfaces</p> <p>8.3 Printed flexible and reconfigurable frequency selective surfaces</p> <p>8.4 Metamaterials inspired FSS antennas and circuits</p> <p>8.4.1 Ultra-wideband antennas and microstrip filters</p> <p>8.4.2 Microstrip antennas with HIS ground plane</p> <p>8.4.3 Fabry-Pérot antenna</p> <p>8.5 Metamaterial-inspired microfluidic sensors</p> <p>8.6 Metamaterial-inspired rotation and displacement sensors</p> <p>9 Nonlinear metamaterials and metadevices</p> <p>9.1 Introduction</p> 9.2 Implementation approaches to manufacture nonlinear metamaterials<p></p> <p>9.2.1 Insertion of nonlinear elements</p> <p>9.2.2 Nonlinear host medium</p> <p>9.2.3 Local field enhancement</p> <p>9.2.4 Nonlinear transmission lines</p> <p>9.2.5 Intrinsic structural nonlinearity</p> <p>9.2.6 Nonlinear metamaterials with quantum and superconducting elements</p> <p>9.3 Nonlinear responses and effects</p> <p>9.3.1 Nonlinear self-action</p> <p>9.3.2 Frequency conversion and parametric amplification</p> <p>9.3.2.1 Harmonic generation</p> <p>9.3.2.2 Parametric amplification and loss compensation</p> <p>10 Acoustic metamaterials and metadevices</p> <p>10.1 Historical perspective and basic principles</p> <p>10.2 Dynamic negative density and compressibility</p> <p>10.3 Membrane-type acoustic materials</p> <p>10.4 Transformation acoustics and metadevices with spatially varying index</p> <p>10.5 Space-coiling and acoustic metasurfaces</p> <p>10.6 Acoustic absorption</p> <p>10.7 Active acoustic metamaterials</p> <p>10.8 Emerging directions and future trends</p> <p>10.8.1 Nonlinear acoustic metamaterials</p> <p>10.8.2 Nonreciprocal acoustic devices</p> <p>10.8.3 Elastic and mechanical metamaterials</p> <p>10.8.4 Graphene-inspired acoustic metamaterials</p> 10.8.5 Acoustic metamaterials with characteristics describable by non-Hermitian Hamiltonians<p></p> <p>10.8.6 Future trends</p> <p>11 Mechanical metamaterials and metadevices</p> <p>11.1 Introduction</p> <p>11.2 Auxetic mechanical metamaterials</p> <p>11.2.1 Re-entrant structures</p> <p>11.2.1.1 Auxetic foam</p> <p>11.2.1.2 Auxetic honeycomb</p> <p>11.2.1.3 Three-dimensional re-entrant structures</p> <p>11.2.1.4 Auxetic microporous polymers</p> <p>11.2.2 Auxetic chiral structures</p> <p>11.2.3 Rotating rigid and semi-rigid auxetic structures</p> <p>11.2.4 Dilational metamaterials</p> 11.2.5 Potential applications of auxetic metamaterials<p></p> <p>11.3 Penta-mode metamaterials</p> <p>11.4 Ultra-property metamaterials</p> <p>11.5 Negative-parameter metamaterials</p> <p>11.6 Mechanical metamaterials with tunable negative thermal expansion</p> <p>11.7 Active, adaptive, and programmable metamaterials</p> <p>11.8 Origami-based metamaterials</p> <p>11.9 Mechanical metamaterials as seismic shields</p> <p>11.10 Future trends</p> <p>12 Perspective and future trends</p> <p>12.1 Emerging metamaterials capabilities and new concepts</p> <p>12.1.1 Virtual photon interactions mediated by metamaterials</p> 12.1.2 Routes to aperiodic and correlation metamaterials<p></p> <p>12.1.3 Mathematical operations and processing with structured metamaterials</p> <p>12.1.4 Topological effects in metamaterials</p> <p>12.2 Manipulation of metasurface properties</p> <p>12.2.1 Functionally doped metal oxides for future ultrafast active metamaterials</p> <p>12.2.2 Optical dielectric metamaterials and metasurfaces</p> <p>12.2.3 Beam shaping with metasurfaces</p> <p>12.2.4 Control of emission and absorption with metamaterials</p> <p>12.2.5 Control of far-field thermal emission properties through the use of photonic structures</p> <p>12.3 Research trends of nonlinear, active and tunable properties</p> 12.3.1 Engineering mid-infrared and optical nonlinearities with metamaterials<p></p> <p>12.3.2 Directional control of nonlinear scattering from metasurfaces</p> <p>12.3.3 Coherent control in planar photonic metamaterials</p> <p>12.3.4 Nanomechanical photonic metamaterials</p> <p>12.4 Emerging metadevices and applications</p> <p>12.4.1 RF beam steering module with metamaterials electronically scanned array</p> <p>12.4.2 Smart metamaterial antennas</p> <p>12.4.3 Energy harvesting enhanced with metamaterials</p> <p>12.4.3.1 Electromagnetic energy harvesting</p> <p>12.4.3.2 Photonic crystals-based vibroacoustic energy harvesting</p> <p>12.4.3.3Acoustic metamaterial-based vibroacoustic energy harvesting</p> 12.4.4 Focus magnetic stimulation<p></p> <p>12.4.5 Thermophotovoltaics</p> <p>12.4.6 Transparent thermal barrier</p> <p>12.4.7 Passive radiative cooling</p> <p>12.5 Prospective manufacturing and assembly technologies of metamaterials and metadevices</p> <p>12.5.1 Nanoparticles for complex multimaterial nanostructures</p> <p>12.5.2 Eutectics as metamaterials</p> <p>12.5.3 Large area roll-to-roll processing</p>

Managementboek Top 100

Rubrieken

    Personen

      Trefwoorden

        Functional Metamaterials and Metadevices