, ,

From Plant Genomics to Plant Biotechnology

Gebonden Engels 2013 9781907568299
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

With the appearance of methods for the sequencing of genomes and less expensive next generation sequencing methods, we face rapid advancements of the -omics technologies and plant biology studies: reverse and forward genetics, functional genomics, transcriptomics, proteomics, metabolomics, the movement at distance of effectors and structural biology. From plant genomics to plant biotechnology reviews the recent advancements in the post-genomic era, discussing how different varieties respond to abiotic and biotic stresses, understanding the epigenetic control and epigenetic memory, the roles of non-coding RNAs, applicative uses of RNA silencing and RNA interference in plant physiology and in experimental transgenics and plants modified to specific aims. In the forthcoming years these advancements will support the production of plant varieties better suited to resist biotic and abiotic stresses, for food and non-food applications.

This book covers these issues, showing how such technologies are influencing the plant field in sectors such as the selection of plant varieties and plant breeding, selection of optimum agronomic traits, stress-resistant varieties, improvement of plant fitness, improving crop yield, and non-food applications in the knowledge based bio-economy.

Specificaties

ISBN13:9781907568299
Taal:Engels
Bindwijze:Gebonden

Lezersrecensies

Wees de eerste die een lezersrecensie schrijft!

Inhoudsopgave

<p>List of figures</p> <p>List of tables</p> <p>Abbreviations</p> <p>About the contributors</p> <p>Introduction</p> <p>Chapter 1: From plant genomics to -omics technologies</p> <p>Abstract:</p> <p>1.1 SuperSAGE</p> <p>1.2 CAGE – cap analysis of gene expression</p> <p>1.3 -Omics and new advances in plant functional genomics</p> <p>Chapter 2: Plant microRNAs</p> <p>Abstract:</p> <p>2.1 Introduction</p> <p>2.2 Transcription of miRNA genes</p> <p>2.3 MicroRNA processing</p> <p>2.4 Modes of action</p> <p>2.5 Evolution of miRNA genes</p> <p>2.6 Differences from animal miRNAs</p> <p>2.7 miRNA functions</p> <p>2.8 The potential roles of microRNAs in crop improvement</p> <p>Chapter 3: Epigenetic control by plant Polycomb proteins: new perspectives and emerging roles in stress response</p> <p>Abstract:</p> <p>3.1 Introduction</p> <p>3.2 Conserved multi-protein complexes with histone post-translational modifying activities</p> <p>3.3 Polycomb functions in plant development</p> <p>3.4 Non-coding RNAs as regulatory cofactors of Polycomb complexes</p> <p>3.5 Emerging roles of PcG and ncRNAs in responses to environmental stress</p> <p>3.6 PcG protein functions in three-dimensional nuclear organization</p> <p>3.7 Perspectives: the role of Polycomb in abiotic and biotic stress response</p> <p>Chapter 4: Metabolite profiling for plant research</p> <p>Abstract:</p> <p>4.1 Introduction</p> <p>4.2 Methodological approach</p> <p>4.3 Metabolomic platform</p> <p>4.4 Metabolomics in plant science</p> <p>4.5 The future role of metabolomics in crop improvement</p> <p>4.6 Conclusion</p> <p>Chapter 5: The uniqueness of conifers</p> <p>Abstract:</p> <p>5.1 Introduction</p> <p>5.2 Functional differentiation</p> <p>5.3 Genome structure and composition</p> <p>5.4 Genome function</p> <p>5.5 Chemical divergence</p> <p>5.6 Meeting the challenge: the system biology approach to unraveling the conifer genome</p> <p>Chapter 6: Cryptochrome genes modulate global transcriptome of tomato</p> <p>Abstract:</p> <p>6.1 Introduction</p> <p>6.2 Cryptochrome functions</p> <p>6.3 Role of cryptochromes in mediating light-regulated gene expression in plants</p> <p>6.4 Cryptochromes influence the diurnal global transcription profiles in tomato</p> <p>Chapter 7: Genomics of grapevine: from genomics research on model plants to crops and from science to grapevine breeding</p> <p>Abstract:</p> <p>7.1 Use of genetic and molecular markers for studies of genetic diversity and genome selection in grapevine</p> <p>7.2 Grapevine breeding</p> <p>7.3 Transgene silencing</p> <p>7.4 Identification and characterization of transgene insertion loci</p> <p>7.5 Integration of vector backbone</p> <p>7.6 Stability of inserted transgenes</p> <p>7.7 Conclusions</p> <p>7.8 Acknowledgement</p> <p>Chapter 8: Grapevine genomics and phenotypic diversity of bud sports, varieties and wild relatives</p> <p>Abstract:</p> <p>8.1 Introduction</p> <p>8.2 Origin of Vitis vinifera, domestication, and early selection for fruit characters</p> <p>8.3 Sources of phenotypic variation in present-day grapevines</p> <p>8.4 Genomic tools in the genome sequencing era</p> <p>8.5 Current activities in grapevine genome analysis</p> <p>8.6 Bud organogenesis, somatic mutations, and DNA typing of somatic chimeras</p> <p>8.7 Phenotypically divergent clones and the underlying DNA variation</p> <p>8.8 Transposon insertion-site profiling using NGS</p> <p>8.9 Large structural variation using NGS</p> <p>8.10 Copy number variation, gene redundancy, and subtle specialisation in secondary metabolism</p> <p>8.11 Conclusions</p> <p>Chapter 9: Peach ripening transcriptomics unveils new and unexpected targets for the improvement of drupe quality</p> <p>Abstract:</p> <p>9.1 Introduction</p> <p>9.2 The fruit</p> <p>9.3 Peach development and ripening</p> <p>9.4 Microarray Transcript Profiling in peach</p> <p>9.5 New players in the control of peach ripening</p> <p>9.6 Conclusions</p> <p>9.7 Acknowledgements</p> <p>Chapter 10: Application of doubled haploid technology in breeding of Brassica napus</p> <p>Abstract:</p> <p>10.1 Introduction</p> <p>10.2 Technique of isolated microspore culture</p> <p>10.3 Doubled haploid method in breeding of Brassica napus</p> <p>10.4 In vitro mutagenesis</p> <p>10.5 Utilization of double haploidy in selection for resistance</p> <p>10.6 Selection for modified seed oil composition</p> <p>10.7 Selection for improved seed meal</p> <p>10.8 Selection for cold tolerance</p> <p>10.9 Concluding remarks</p> <p>Chapter 11: Plant biodiversity and biotechnology</p> <p>Abstract:</p> <p>11.1 Biodiversity</p> <p>11.2 Biotechnology</p> <p>11.3 Heat stress tolerance in cereals</p> <p>11.4 Modern approaches in cereals for yield and food security under temperature stress</p> <p>11.5 Future perspectives</p> <p>11.6 Acknowledgment</p> <p>Chapter 12: Natural resveratrol bioproduction</p> <p>Abstract:</p> <p>12.1 Stilbenes and resveratrol</p> <p>12.2 Health benefits of resveratrol</p> <p>12.3 trans-resveratrol production through plant cell cultures</p> <p>12.4 Introducing new pathway branches to crop plants: trans-resveratrol synthesis in tomato fruits</p> <p>12.5 Concluding remarks</p> <p>Index</p>

Managementboek Top 100

Rubrieken

    Personen

      Trefwoorden

        From Plant Genomics to Plant Biotechnology