, , , , e.a.

Metaheuristics for Air Traffic Management

Gebonden Engels 2015 9781848218109
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

Air Traffic Management involves many different services such as Airspace Management, Air Traffic Flow Management and Air Traffic Control. Many optimization problems arise from these topics and they generally involve different kinds of variables, constraints, uncertainties. Metaheuristics are often good candidates to solve these problems.   

The book models various complex Air Traffic Management problems such as airport taxiing, departure slot allocation, en route conflict resolution, airspace and route design. The authors detail the operational context and state of art for each problem. They introduce different approaches using metaheuristics to solve these problems and when possible, compare their performances to existing approaches

Specificaties

ISBN13:9781848218109
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:214

Lezersrecensies

Wees de eerste die een lezersrecensie schrijft!

Inhoudsopgave

<p>Introduction&nbsp; ix</p>
<p>Chapter 1. The Context of Air Traffic Management&nbsp; 1</p>
<p>1.1. Introduction&nbsp; 1</p>
<p>1.2. Vocabulary and units 2</p>
<p>1.3. Missions and actors of the air traffic management system 3</p>
<p>1.4. Visual flight rules and instrumental flight rules 4</p>
<p>1.5. Airspace classes&nbsp; 4</p>
<p>1.6. Airspace organization and management 5</p>
<p>1.6.1. Flight information regions and functional airspace blocks&nbsp; 5</p>
<p>1.6.2. Lower and upper airspace 6</p>
<p>1.6.3. Controlled airspace: en route, approach or airport control 7</p>
<p>1.6.4. Air route network and airspace sectoring&nbsp; 7</p>
<p>1.7. Traffic separation 9</p>
<p>1.7.1. Separation standard, loss of separation 9</p>
<p>1.7.2. Conflict detection and resolution 11</p>
<p>1.7.3. The distribution of tasks among controllers 12</p>
<p>1.7.4. The controller tools&nbsp; 12</p>
<p>1.8. Traffic regulation&nbsp; 13</p>
<p>1.8.1. Capacity and demand 13</p>
<p>1.8.2. Workload and air traffic control complexity&nbsp; 15</p>
<p>1.9. Airspace management in en route air traffic control centers&nbsp; 16</p>
<p>1.9.1. Operating air traffic control sectors in real time&nbsp; 16</p>
<p>1.9.2. Anticipating sector openings (France and Europe) 17</p>
<p>1.10. Air traffic flow management&nbsp; 19</p>
<p>1.11. Research in air traffic management 20</p>
<p>1.11.1. The international context&nbsp; 20</p>
<p>1.11.2. Research topics&nbsp; 21</p>
<p>Chapter 2. Air Route Optimization 23</p>
<p>2.1. Introduction&nbsp; 23</p>
<p>2.2. 2D–route network 24</p>
<p>2.2.1. Optimal positioning of nodes and edges using geometric algorithms&nbsp; 24</p>
<p>2.2.2. Node positioning, with fixed topology, using a simulated annealing or a particle swarm optimization algorithm 28</p>
<p>2.2.3. Defining 2D–corridors with a clustering method and a genetic algorithm 29</p>
<p>2.3. A network of separate 3D–tubes for the main traffic flows 31</p>
<p>2.3.1. A simplified 3D–trajectory model&nbsp; 31</p>
<p>2.3.2. Problem formulations and possible strategies&nbsp; 34</p>
<p>2.3.3. An A algorithm for the 1 versus n problem 35</p>
<p>2.3.4. A hybrid evolutionary algorithm for the global problem 41</p>
<p>2.3.5. Results on a toy problem, with the simplified 3D–trajectory model&nbsp; 50</p>
<p>2.3.6. Application to real data, using a more realistic 3D–tube model&nbsp; 57</p>
<p>2.4. Conclusion on air route optimization&nbsp; 66</p>
<p>Chapter 3. Airspace Management 69</p>
<p>3.1. Airspace sector design 70</p>
<p>3.2. Functional airspace block definition 71</p>
<p>3.2.1. Simulated annealing algorithm&nbsp; 73</p>
<p>3.2.2. Ant colony algorithm 73</p>
<p>3.2.3. A fusion fission method 73</p>
<p>3.2.4. Comparison of fusion fission and classical graph partitioning methods 74</p>
<p>3.3. Prediction of air traffic control sector openings 74</p>
<p>3.3.1. Problem difficulty and possible approaches 78</p>
<p>3.3.2. Using a genetic algorithm 78</p>
<p>3.3.3. Tree–search methods, constraint programming 79</p>
<p>3.3.4. A neural network for workload prediction 80</p>
<p>3.3.5. Conclusion on the prediction of sector openings&nbsp; 83</p>
<p>Chapter 4. Departure Slot Allocation 85</p>
<p>4.1. Introduction&nbsp; 85</p>
<p>4.2. Context and related works&nbsp; 86</p>
<p>4.2.1. Ground holding&nbsp; 86</p>
<p>4.3. Conflict–free slot allocation&nbsp; 87</p>
<p>4.3.1. Conflict detection 88</p>
<p>4.3.2. Sliding forecast time window&nbsp; 90</p>
<p>4.3.3. Evolutionary algorithm&nbsp; 91</p>
<p>4.4. Results 95</p>
<p>4.4.1. Evolution of the problem size&nbsp; 95</p>
<p>4.4.2. Numerical results 96</p>
<p>4.5. Concluding remarks&nbsp; 98</p>
<p>Chapter 5. Airport Traffic Management&nbsp; 101</p>
<p>5.1. Introduction&nbsp; 101</p>
<p>5.1.1. Airports main challenges 101</p>
<p>5.1.2. Known difficulties&nbsp; 102</p>
<p>5.1.3. Optimization problems in airport traffic management 103</p>
<p>5.2. Gate assignment&nbsp; 103</p>
<p>5.2.1. Problem description&nbsp; 103</p>
<p>5.2.2. Resolution methods&nbsp; 104</p>
<p>5.3. Runway scheduling&nbsp; 106</p>
<p>5.3.1. Problem description&nbsp; 106</p>
<p>5.3.2. An example of problem formulation&nbsp; 108</p>
<p>5.3.3. Resolution methods&nbsp; 109</p>
<p>5.4. Surface routing&nbsp; 111</p>
<p>5.4.1. Problem description&nbsp; 111</p>
<p>5.4.2. Related work&nbsp; 112</p>
<p>5.5. Global airport traffic optimization&nbsp; 115</p>
<p>5.5.1. Problem description&nbsp; 115</p>
<p>5.5.2. Coordination scheme between the different predictive systems&nbsp; 116</p>
<p>5.5.3. Simulation results 117</p>
<p>5.6. Conclusion 121</p>
<p>Chapter 6. Conflict Detection and Resolution&nbsp; 123</p>
<p>6.1. Introduction&nbsp; 123</p>
<p>6.2. Conflict resolution complexity&nbsp; 125</p>
<p>6.3. Free–flight approaches 128</p>
<p>6.3.1. Reactive techniques&nbsp; 129</p>
<p>6.3.2. Iterative approach 129</p>
<p>6.3.3. An example of reactive approach: neural network trained by evolutionary algorithms&nbsp; 130</p>
<p>6.3.4. A limit to autonomous approaches: the speed constraint 137</p>
<p>6.4. Iterative approaches&nbsp; 138</p>
<p>6.5. Global approaches 138</p>
<p>6.6. A global approach using evolutionary computation&nbsp; 140</p>
<p>6.6.1. Maneuver modeling&nbsp; 140</p>
<p>6.6.2. Uncertainty modeling 141</p>
<p>6.6.3. Real–time management&nbsp; 142</p>
<p>6.6.4. Evolutionary algorithm implementation 144</p>
<p>6.6.5. Alternative modeling 151</p>
<p>6.6.6. One–day traffic statistics 152</p>
<p>6.6.7. Introducing automation in the existing system 153</p>
<p>6.7. A global approach using ant colony optimization 155</p>
<p>6.7.1. Problem modeling 155</p>
<p>6.7.2. Algorithm description 156</p>
<p>6.7.3. Algorithm improvement: constraint relaxation 159</p>
<p>6.7.4. Results 160</p>
<p>6.7.5. Conclusion and further work 160</p>
<p>6.8. A new framework for comparing approaches&nbsp; 163</p>
<p>6.8.1. Introduction&nbsp; 163</p>
<p>6.8.2. Trajectory prediction model 163</p>
<p>6.8.3. Conflict detection 168</p>
<p>6.8.4. Benchmark generation&nbsp; 169</p>
<p>6.8.5. Conflict resolution 170</p>
<p>6.9. Conclusion 177</p>
<p>Conclusion&nbsp; 179</p>
<p>Bibliography 181</p>
<p>Index&nbsp; 193</p>

Managementboek Top 100

Rubrieken

    Personen

      Trefwoorden

        Metaheuristics for Air Traffic Management