, ,

Evolutionary Computation with Biogeography–based Optimization

Gebonden Engels 2017 9781848218079
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

Evolutionary computation algorithms are employed to minimize functions with large number of variables. Biogeography–based optimization (BBO) is an optimization algorithm that is based on the science of biogeography, which researches the migration patterns of species. These migration paradigms provide the main logic behind BBO. Due to the cross–disciplinary nature of the optimization problems, there is a need to develop multiple approaches to tackle them and to study the theoretical reasoning behind their performance. This book explains the mathematical model of BBO algorithm and its variants created to cope with continuous domain problems (with and without constraints) and combinatorial problems.

Specificaties

ISBN13:9781848218079
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:344

Lezersrecensies

Wees de eerste die een lezersrecensie schrijft!

Inhoudsopgave

<p>Chapter 1. The Science of Biogeography 1</p>
<p>1.1. Introduction&nbsp; 1</p>
<p>1.2. Island biogeography&nbsp; 3</p>
<p>1.3. Influence factors for biogeography&nbsp; 6</p>
<p>Chapter 2. Biogeography and Biological Optimization&nbsp; 11</p>
<p>2.1. A mathematical model of biogeography 11</p>
<p>2.2. Biogeography as an optimization process&nbsp; 16</p>
<p>2.3. Biological optimization&nbsp; 19</p>
<p>2.3.1. Genetic algorithms&nbsp; 19</p>
<p>2.3.2. Evolution strategies&nbsp; 20</p>
<p>2.3.3. Particle swarm optimization 21</p>
<p>2.3.4. Artificial bee colony algorithm 22</p>
<p>2.4. Conclusion 23</p>
<p>Chapter 3. A Basic BBO Algorithm 25</p>
<p>3.1. BBO definitions and algorithm&nbsp; 25</p>
<p>3.1.1. Migration 26</p>
<p>3.1.2. Mutation&nbsp; 27</p>
<p>3.1.3. BBO implementation 27</p>
<p>3.2. Differences between BBO and other optimization algorithms&nbsp; 35</p>
<p>3.2.1. BBO and genetic algorithms 35</p>
<p>3.2.2. BBO and other algorithms&nbsp; 36</p>
<p>3.3. Simulations 37</p>
<p>3.4. Conclusion 44</p>
<p>Chapter 4. BBO Extensions 45</p>
<p>4.1. Migration curves&nbsp; 45</p>
<p>4.2. Blended migration 49</p>
<p>4.3. Other approaches to BBO 51</p>
<p>4.4. Applications&nbsp; 56</p>
<p>4.5. Conclusion 59</p>
<p>Chapter 5. BBO as a Markov Process 61</p>
<p>5.1. Markov definitions and notations&nbsp; 61</p>
<p>5.2. Markov model of BBO&nbsp; 72</p>
<p>5.3. BBO convergence 79</p>
<p>5.4. Markov models of BBO extensions 90</p>
<p>5.5. Conclusions&nbsp; 99</p>
<p>Chapter 6. Dynamic System Models of BBO 103</p>
<p>6.1. Basic notation 103</p>
<p>6.2. Dynamic system models of BBO 105</p>
<p>6.3. Applications to benchmark problems&nbsp; 119</p>
<p>6.4. Conclusions&nbsp; 122</p>
<p>Chapter 7. Statistical Mechanics Approximations of BBO&nbsp; 123</p>
<p>7.1. Preliminary foundation&nbsp; 123</p>
<p>7.2. Statistical mechanics model of BBO 128</p>
<p>7.2.1. Migration 128</p>
<p>7.2.2. Mutation&nbsp; 134</p>
<p>7.3. Further discussion 141</p>
<p>7.3.1. Finite population effects 141</p>
<p>7.3.2. Separable fitness functions&nbsp; 142</p>
<p>7.4. Conclusions&nbsp; 143</p>
<p>Chapter 8. BBO for Combinatorial Optimization&nbsp; 145</p>
<p>8.1. Traveling salesman problem 147</p>
<p>8.2. BBO for the TSP&nbsp; 148</p>
<p>8.2.1. Population initialization 148</p>
<p>8.2.2. Migration in the TSP 150</p>
<p>8.2.3. Mutation in the TSP 157</p>
<p>8.2.4. Implementation framework 159</p>
<p>8.3. Graph coloring 163</p>
<p>8.4. Knapsack problem 165</p>
<p>8.5. Conclusion 167</p>
<p>Chapter 9. Constrained BBO&nbsp; 169</p>
<p>9.1. Constrained optimization 170</p>
<p>9.2. Constraint–handling methods 172</p>
<p>9.2.1. Static penalty methods&nbsp; 172</p>
<p>9.2.2. Superiority of feasible points&nbsp; 173</p>
<p>9.2.3. The eclectic evolutionary algorithm 174</p>
<p>9.2.4. Dynamic penalty methods&nbsp; 174</p>
<p>9.2.5. Adaptive penalty methods&nbsp; 176</p>
<p>9.2.6. The niched–penalty approach&nbsp; 177</p>
<p>9.2.7. Stochastic ranking&nbsp; 178</p>
<p>9.2.8. –level comparisons&nbsp; 178</p>
<p>9.3. BBO for constrained optimization&nbsp; 179</p>
<p>9.4. Conclusion 185</p>
<p>Chapter 10. BBO in Noisy Environments 187</p>
<p>10.1. Noisy fitness functions&nbsp; 188</p>
<p>10.2. Influence of noise on BBO 190</p>
<p>10.3. BBO with re–sampling&nbsp; 193</p>
<p>10.4. The Kalman BBO&nbsp; 196</p>
<p>10.5. Experimental results 199</p>
<p>10.6. Conclusion&nbsp; 201</p>
<p>Chapter 11. Multi–objective BBO&nbsp; 203</p>
<p>11.1. Multi–objective optimization problems 204</p>
<p>11.2. Multi–objective BBO 211</p>
<p>11.2.1. Vector evaluated BBO 211</p>
<p>11.2.2. Non–dominated sorting BBO&nbsp; 213</p>
<p>11.2.3. Niched Pareto BBO 216</p>
<p>11.2.4. Strength Pareto BBO&nbsp; 218</p>
<p>11.3. Real–world applications 223</p>
<p>11.3.1. Warehouse scheduling model 223</p>
<p>11.3.2. Optimization of warehouse scheduling&nbsp; 229</p>
<p>11.4. Conclusion&nbsp; 231</p>
<p>Chapter 12. Hybrid BBO Algorithms&nbsp; 233</p>
<p>12.1. Opposition–based BBO 234</p>
<p>12.1.1. Opposition definitions and concepts&nbsp; 234</p>
<p>12.1.2. Oppositional BBO&nbsp; 236</p>
<p>12.1.3. Experimental results 238</p>
<p>12.2. BBO with local search&nbsp; 240</p>
<p>12.2.1. Local search methods&nbsp; 240</p>
<p>12.2.2. Simulation results&nbsp; 245</p>
<p>12.3. BBO with other EAs 247</p>
<p>12.3.1. Iteration–level hybridization&nbsp; 247</p>
<p>12.3.2. Algorithm–level hybridization 250</p>
<p>12.3.3. Experimental results 254</p>
<p>12.4. Conclusion&nbsp; 256</p>
<p>Appendices 259</p>
<p>Appendix A. Unconstrained Benchmark Functions&nbsp; 261</p>
<p>Appendix B. Constrained Benchmark Functions&nbsp; 265</p>
<p>Appendix C. Multi–objective Benchmark Functions&nbsp; 289</p>
<p>Bibliography 309</p>
<p>Index 325</p>

Managementboek Top 100

Rubrieken

    Personen

      Trefwoorden

        Evolutionary Computation with Biogeography–based Optimization