Guided Randomness in Optimization Volume 1

Gebonden Engels 2015 9781848218055
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

The performance of an algorithm used depends on the GNA. This book focuses on the comparison of optimizers, it defines a stress–outcome approach which can be derived all the classic criteria (median, average, etc.) and other more sophisticated.   Source–codes used for the examples are also presented, this allows a reflection on the "superfluous chance," succinctly explaining why and how the stochastic aspect of optimization could be avoided in some cases.

Specificaties

ISBN13:9781848218055
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:316

Lezersrecensies

Wees de eerste die een lezersrecensie schrijft!

Inhoudsopgave

PREFACE xi
<p>INTRODUCTION xv</p>
<p>PART 1. RANDOMNESS IN OPTIMIZATION&nbsp; 1</p>
<p>CHAPTER 1. NECESSARY RISK 3</p>
<p>1.1. No better than random search&nbsp;3</p>
<p>1.1.1. Uniform random search 4</p>
<p>1.1.2. Sequential search&nbsp;5</p>
<p>1.1.3. Partial gradient&nbsp;5</p>
<p>1.2. Better or worse than random search 7</p>
<p>1.2.1. Positive correlation problems&nbsp;8</p>
<p>1.2.2. Negative correlation problems&nbsp;10</p>
<p>CHAPTER 2. RANDOM NUMBER GENERATORS (RNGS) 13</p>
<p>2.1. Generator types&nbsp;14</p>
<p>2.2. True randomness 15</p>
<p>2.3. Simulated randomness 15</p>
<p>2.3.1. KISS 16</p>
<p>2.3.2. Mersenne–Twister 16</p>
<p>2.4. Simplified randomness 17</p>
<p>2.4.1. Linear congruential generators&nbsp;18</p>
<p>2.4.2. Additive 20</p>
<p>2.4.3. Multiplicative 22</p>
<p>2.5. Guided randomness&nbsp;24</p>
<p>2.5.1. Gaussian 24</p>
<p>2.5.2. Bell 24</p>
<p>2.5.3. Cauchy 27</p>
<p>2.5.4. L&eacute;vy 28</p>
<p>2.5.5. Log–normal&nbsp;28</p>
<p>2.5.6. Composite distributions 28</p>
<p>CHAPTER 3. THE EFFECTS OF RANDOMNESS&nbsp;33</p>
<p>3.1. Initialization 34</p>
<p>3.1.1. Uniform randomness 34</p>
<p>3.1.2. Low divergence&nbsp;36</p>
<p>3.1.3. No Man s Land techniques 37</p>
<p>3.2. Movement 37</p>
<p>3.3. Distribution of the Next Possible Positions (DNPP) 40</p>
<p>3.4. Confinement, constraints and repairs 42</p>
<p>3.4.1. Strict confinement 44</p>
<p>3.4.2. Random confinement 44</p>
<p>3.4.3. Moderate confinement 45</p>
<p>3.4.4. Reverse 45</p>
<p>3.4.5. Reflection–diffusion 45</p>
<p>3.5. Strategy selection 46</p>
<p>PART 2. OPTIMIZER COMPARISON 49</p>
<p>CHAPTER 4. ALGORITHMS AND OPTIMIZERS&nbsp;53</p>
<p>4.1. The Minimaliste algorithm 54</p>
<p>4.1.1. General description 54</p>
<p>4.1.2. Minimaliste in practice 54</p>
<p>4.1.3. Use of randomness 57</p>
<p>4.2. PSO&nbsp;59</p>
<p>4.2.1. Description&nbsp;59</p>
<p>4.2.2. Use of randomness 60</p>
<p>4.3. APS&nbsp;62</p>
<p>4.3.1. Description&nbsp;62</p>
<p>4.3.2. Uses of randomness&nbsp;65</p>
<p>4.4. Applications of randomness 66</p>
<p>CHAPTER 5. PERFORMANCE CRITERIA 69</p>
<p>5.1. Eff–Res: construction and properties 69</p>
<p>5.1.1. Simple example using random search 71</p>
<p>5.2. Criteria and measurements 74</p>
<p>5.2.1. Objective criteria&nbsp;77</p>
<p>5.2.2. Semi–subjective criteria 87</p>
<p>5.3. Practical construction of an Eff–Res 94</p>
<p>5.3.1. Detailed example: (Minimaliste, Alpine 2D)&nbsp;95</p>
<p>5.3.2. Qualitative interpretations&nbsp;106</p>
<p>5.4. Conclusion 108</p>
<p>CHAPTER 6. COMPARING OPTIMIZERS 109</p>
<p>6.1. Data collection and preprocessing&nbsp;111</p>
<p>6.2. Critical analysis of comparisons&nbsp;114</p>
<p>6.2.1. Influence of criteria and the number of attempts 115</p>
<p>6.2.2. Influence of effort levels 115</p>
<p>6.2.3. Global comparison 117</p>
<p>6.2.4. Influence of the RNG 121</p>
<p>6.3. Uncertainty in statistical analysis&nbsp;123</p>
<p>6.3.1. Independence of tests 125</p>
<p>6.3.2. Confidence threshold 125</p>
<p>6.3.3. Success rate&nbsp;125</p>
<p>6.4. Remarks on test sets&nbsp;125</p>
<p>6.4.1. Analysis grid 126</p>
<p>6.4.2. Representativity&nbsp;129</p>
<p>6.5. Precision and prudence&nbsp;130</p>
<p>PART 3 . APPENDICES 131</p>
<p>CHAPTER 7. MATHEMATICAL NOTIONS 133</p>
<p>7.1. Sets closed under permutations 133</p>
<p>7.2. Drawing with or without repetition&nbsp;133</p>
<p>7.3. Properties of the Additive and Multiplicative generators&nbsp;135</p>
<p>7.3.1. Additive 136</p>
<p>7.3.2. Multiplicative 136</p>
<p>CHAPTER 8. BIASES AND SIGNATURES&nbsp;139</p>
<p>8.1. The impossible plateau&nbsp;139</p>
<p>8.2. Optimizer signatures&nbsp;140</p>
<p>CHAPTER 9. A PSEUDO–SCIENTIFIC ARTICLE&nbsp;147</p>
<p>9.1. Article 147</p>
<p>9.2. Criticism 151</p>
<p>CHAPTER 10. COMMON MISTAKES 155</p>
<p>CHAPTER 11. UNNECESSARY RANDOMNESS? LIST–BASED OPTIMIZERS&nbsp;159</p>
<p>11.1. Truncated lists&nbsp;160</p>
<p>11.2. Semi–empirical lists&nbsp;162</p>
<p>11.3. Micro–robots 163</p>
<p>CHAPTER 12. PROBLEMS&nbsp;167</p>
<p>12.1. Deceptive 1 (Flash)&nbsp;167</p>
<p>12.2. Deceptive 2 (Comb) 167</p>
<p>12.3. Deceptive 3 (Brush)&nbsp;168</p>
<p>12.4. Alpine 168</p>
<p>12.5. Rosenbrock 168</p>
<p>12.6. Pressure vessel 169</p>
<p>12.7. Sphere 169</p>
<p>12.8. Traveling salesman: six cities 170</p>
<p>12.9. Traveling salesman: fourteen cities (Burma 14)&nbsp;170</p>
<p>12.10. Tripod 171</p>
<p>12.11. Gear train 171</p>
<p>CHAPTER 13. SOURCE CODES 173</p>
<p>13.1. Random generation and sampling&nbsp;173</p>
<p>13.1.1. Preamble for Scilab codes 174</p>
<p>13.1.2. Drawing of a pseudo–random number, according to options&nbsp;174</p>
<p>13.1.3. True randomness 178</p>
<p>13.1.4. Guided randomness&nbsp;179</p>
<p>13.1.5. Uniform initializations (continuous, combinatorial) 183</p>
<p>13.1.6. Regular initializations (Sobol, Halton)&nbsp;183</p>
<p>13.1.7. No Man s Land techniques&nbsp;184</p>
<p>13.1.8. Sampling 186</p>
<p>13.1.9. Movements and confinements&nbsp;189</p>
<p>13.2. Useful tools 191</p>
<p>13.3. Combinatorial operations 191</p>
<p>13.4. Random algorithm&nbsp;198</p>
<p>13.5. Minimaliste algorithm&nbsp;200</p>
<p>13.6. SPSO algorithm 205</p>
<p>13.7. APS algorithm&nbsp;216</p>
<p>13.8. PSO algorithm 234</p>
<p>13.9. Problems 241</p>
<p>13.9.1. Problem definitions&nbsp;241</p>
<p>13.9.2. Problem landscape&nbsp;254</p>
<p>13.10. Treatment of results 255</p>
<p>13.10.1. Quality (including curves)&nbsp;255</p>
<p>13.10.2. Other criteria (including curves)&nbsp;256</p>
<p>13.10.3. Construction of an Eff–Res&nbsp;261</p>
<p>13.11. Treatment of the Eff–Res 263</p>
<p>13.11.1. Graphic representation&nbsp;263</p>
<p>13.11.2. Interpolation&nbsp;264</p>
<p>13.11.3. Performance criteria (including curves) 265</p>
<p>13.12. Histograms, polar diagrams 271</p>
<p>13.13. Other figures&nbsp;273</p>
<p>13.14. Tests (bias, correlation) 277</p>
<p>BIBLIOGRAPHY 285</p>
<p>INDEX&nbsp;293</p>

Managementboek Top 100

Rubrieken

    Personen

      Trefwoorden

        Guided Randomness in Optimization Volume 1