Guided Randomness in Optimization Volume 1
Gebonden Engels 2015 9781848218055Samenvatting
The performance of an algorithm used depends on the GNA. This book focuses on the comparison of optimizers, it defines a stress–outcome approach which can be derived all the classic criteria (median, average, etc.) and other more sophisticated. Source–codes used for the examples are also presented, this allows a reflection on the "superfluous chance," succinctly explaining why and how the stochastic aspect of optimization could be avoided in some cases.
Specificaties
Lezersrecensies
Inhoudsopgave
<p>INTRODUCTION xv</p>
<p>PART 1. RANDOMNESS IN OPTIMIZATION 1</p>
<p>CHAPTER 1. NECESSARY RISK 3</p>
<p>1.1. No better than random search 3</p>
<p>1.1.1. Uniform random search 4</p>
<p>1.1.2. Sequential search 5</p>
<p>1.1.3. Partial gradient 5</p>
<p>1.2. Better or worse than random search 7</p>
<p>1.2.1. Positive correlation problems 8</p>
<p>1.2.2. Negative correlation problems 10</p>
<p>CHAPTER 2. RANDOM NUMBER GENERATORS (RNGS) 13</p>
<p>2.1. Generator types 14</p>
<p>2.2. True randomness 15</p>
<p>2.3. Simulated randomness 15</p>
<p>2.3.1. KISS 16</p>
<p>2.3.2. Mersenne–Twister 16</p>
<p>2.4. Simplified randomness 17</p>
<p>2.4.1. Linear congruential generators 18</p>
<p>2.4.2. Additive 20</p>
<p>2.4.3. Multiplicative 22</p>
<p>2.5. Guided randomness 24</p>
<p>2.5.1. Gaussian 24</p>
<p>2.5.2. Bell 24</p>
<p>2.5.3. Cauchy 27</p>
<p>2.5.4. Lévy 28</p>
<p>2.5.5. Log–normal 28</p>
<p>2.5.6. Composite distributions 28</p>
<p>CHAPTER 3. THE EFFECTS OF RANDOMNESS 33</p>
<p>3.1. Initialization 34</p>
<p>3.1.1. Uniform randomness 34</p>
<p>3.1.2. Low divergence 36</p>
<p>3.1.3. No Man s Land techniques 37</p>
<p>3.2. Movement 37</p>
<p>3.3. Distribution of the Next Possible Positions (DNPP) 40</p>
<p>3.4. Confinement, constraints and repairs 42</p>
<p>3.4.1. Strict confinement 44</p>
<p>3.4.2. Random confinement 44</p>
<p>3.4.3. Moderate confinement 45</p>
<p>3.4.4. Reverse 45</p>
<p>3.4.5. Reflection–diffusion 45</p>
<p>3.5. Strategy selection 46</p>
<p>PART 2. OPTIMIZER COMPARISON 49</p>
<p>CHAPTER 4. ALGORITHMS AND OPTIMIZERS 53</p>
<p>4.1. The Minimaliste algorithm 54</p>
<p>4.1.1. General description 54</p>
<p>4.1.2. Minimaliste in practice 54</p>
<p>4.1.3. Use of randomness 57</p>
<p>4.2. PSO 59</p>
<p>4.2.1. Description 59</p>
<p>4.2.2. Use of randomness 60</p>
<p>4.3. APS 62</p>
<p>4.3.1. Description 62</p>
<p>4.3.2. Uses of randomness 65</p>
<p>4.4. Applications of randomness 66</p>
<p>CHAPTER 5. PERFORMANCE CRITERIA 69</p>
<p>5.1. Eff–Res: construction and properties 69</p>
<p>5.1.1. Simple example using random search 71</p>
<p>5.2. Criteria and measurements 74</p>
<p>5.2.1. Objective criteria 77</p>
<p>5.2.2. Semi–subjective criteria 87</p>
<p>5.3. Practical construction of an Eff–Res 94</p>
<p>5.3.1. Detailed example: (Minimaliste, Alpine 2D) 95</p>
<p>5.3.2. Qualitative interpretations 106</p>
<p>5.4. Conclusion 108</p>
<p>CHAPTER 6. COMPARING OPTIMIZERS 109</p>
<p>6.1. Data collection and preprocessing 111</p>
<p>6.2. Critical analysis of comparisons 114</p>
<p>6.2.1. Influence of criteria and the number of attempts 115</p>
<p>6.2.2. Influence of effort levels 115</p>
<p>6.2.3. Global comparison 117</p>
<p>6.2.4. Influence of the RNG 121</p>
<p>6.3. Uncertainty in statistical analysis 123</p>
<p>6.3.1. Independence of tests 125</p>
<p>6.3.2. Confidence threshold 125</p>
<p>6.3.3. Success rate 125</p>
<p>6.4. Remarks on test sets 125</p>
<p>6.4.1. Analysis grid 126</p>
<p>6.4.2. Representativity 129</p>
<p>6.5. Precision and prudence 130</p>
<p>PART 3 . APPENDICES 131</p>
<p>CHAPTER 7. MATHEMATICAL NOTIONS 133</p>
<p>7.1. Sets closed under permutations 133</p>
<p>7.2. Drawing with or without repetition 133</p>
<p>7.3. Properties of the Additive and Multiplicative generators 135</p>
<p>7.3.1. Additive 136</p>
<p>7.3.2. Multiplicative 136</p>
<p>CHAPTER 8. BIASES AND SIGNATURES 139</p>
<p>8.1. The impossible plateau 139</p>
<p>8.2. Optimizer signatures 140</p>
<p>CHAPTER 9. A PSEUDO–SCIENTIFIC ARTICLE 147</p>
<p>9.1. Article 147</p>
<p>9.2. Criticism 151</p>
<p>CHAPTER 10. COMMON MISTAKES 155</p>
<p>CHAPTER 11. UNNECESSARY RANDOMNESS? LIST–BASED OPTIMIZERS 159</p>
<p>11.1. Truncated lists 160</p>
<p>11.2. Semi–empirical lists 162</p>
<p>11.3. Micro–robots 163</p>
<p>CHAPTER 12. PROBLEMS 167</p>
<p>12.1. Deceptive 1 (Flash) 167</p>
<p>12.2. Deceptive 2 (Comb) 167</p>
<p>12.3. Deceptive 3 (Brush) 168</p>
<p>12.4. Alpine 168</p>
<p>12.5. Rosenbrock 168</p>
<p>12.6. Pressure vessel 169</p>
<p>12.7. Sphere 169</p>
<p>12.8. Traveling salesman: six cities 170</p>
<p>12.9. Traveling salesman: fourteen cities (Burma 14) 170</p>
<p>12.10. Tripod 171</p>
<p>12.11. Gear train 171</p>
<p>CHAPTER 13. SOURCE CODES 173</p>
<p>13.1. Random generation and sampling 173</p>
<p>13.1.1. Preamble for Scilab codes 174</p>
<p>13.1.2. Drawing of a pseudo–random number, according to options 174</p>
<p>13.1.3. True randomness 178</p>
<p>13.1.4. Guided randomness 179</p>
<p>13.1.5. Uniform initializations (continuous, combinatorial) 183</p>
<p>13.1.6. Regular initializations (Sobol, Halton) 183</p>
<p>13.1.7. No Man s Land techniques 184</p>
<p>13.1.8. Sampling 186</p>
<p>13.1.9. Movements and confinements 189</p>
<p>13.2. Useful tools 191</p>
<p>13.3. Combinatorial operations 191</p>
<p>13.4. Random algorithm 198</p>
<p>13.5. Minimaliste algorithm 200</p>
<p>13.6. SPSO algorithm 205</p>
<p>13.7. APS algorithm 216</p>
<p>13.8. PSO algorithm 234</p>
<p>13.9. Problems 241</p>
<p>13.9.1. Problem definitions 241</p>
<p>13.9.2. Problem landscape 254</p>
<p>13.10. Treatment of results 255</p>
<p>13.10.1. Quality (including curves) 255</p>
<p>13.10.2. Other criteria (including curves) 256</p>
<p>13.10.3. Construction of an Eff–Res 261</p>
<p>13.11. Treatment of the Eff–Res 263</p>
<p>13.11.1. Graphic representation 263</p>
<p>13.11.2. Interpolation 264</p>
<p>13.11.3. Performance criteria (including curves) 265</p>
<p>13.12. Histograms, polar diagrams 271</p>
<p>13.13. Other figures 273</p>
<p>13.14. Tests (bias, correlation) 277</p>
<p>BIBLIOGRAPHY 285</p>
<p>INDEX 293</p>
Rubrieken
- advisering
- algemeen management
- coaching en trainen
- communicatie en media
- economie
- financieel management
- inkoop en logistiek
- internet en social media
- it-management / ict
- juridisch
- leiderschap
- marketing
- mens en maatschappij
- non-profit
- ondernemen
- organisatiekunde
- personal finance
- personeelsmanagement
- persoonlijke effectiviteit
- projectmanagement
- psychologie
- reclame en verkoop
- strategisch management
- verandermanagement
- werk en loopbaan