,

Ultra Low Power Electronics and Adiabatic Solutions

Gebonden Engels 2016 9781848217386
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

The improvement of energy efficiency in electronics and computing systems is currently central to information and communication technology design; low–cost cooling, autonomous portable systems and functioning on recovered energy all need to be continuously improved to allow modern technology to compute more while consuming less. This book presents the basic principles of the origins and limits of heat dissipation in electronic systems.

Mechanisms of energy dissipation, the physical foundations for understanding CMOS components and sophisticated optimization techniques are explored in the first half of the book, before an introduction to reversible and quantum computing. Adiabatic computing and nano–relay technology are then explored as new solutions to achieving improvements in heat creation and energy consumption, particularly in renewed consideration of circuit architecture and component technology.

Concepts inspired by recent research into energy efficiency are brought together in this book, providing an introduction to new approaches and technologies which are required to keep pace with the rapid evolution of electronics.

Specificaties

ISBN13:9781848217386
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:338

Lezersrecensies

Wees de eerste die een lezersrecensie schrijft!

Inhoudsopgave

<p>Introduction&nbsp; ix</p>
<p>Chapter 1. Dissipation Sources in Electronic Circuits 1</p>
<p>1.1. Brief description of logic types 1</p>
<p>1.1.1. Boolean logic 1</p>
<p>1.1.2. Combinational and sequential logic&nbsp; 7</p>
<p>1.1.3. NMOS and PMOS transistors 15</p>
<p>1.1.4. Complementary CMOS logic&nbsp; 21</p>
<p>1.1.5. Pass–transistor logic 26</p>
<p>1.1.6. Dynamic logic 29</p>
<p>1.2. Origins of heat dissipation in circuits 32</p>
<p>1.2.1. Joule effect in circuits&nbsp; 32</p>
<p>1.2.2. Calculating dynamic power 34</p>
<p>1.2.3. Calculating static power and its origins&nbsp; 37</p>
<p>Chapter 2. Thermodynamics and Information Theory 39</p>
<p>2.1. Recalling the basics: entropy and information&nbsp; 39</p>
<p>2.1.1. Statistical definition of entropy 39</p>
<p>2.1.2. Macroscopic energy and entropy&nbsp; 42</p>
<p>2.1.3. Thermostat exchange, Boltzmann s law and the equal division of energy&nbsp; 46</p>
<p>2.1.4. Summary and example of energy production in a conductor carrying a current 50</p>
<p>2.1.5. Information and the associated entropy&nbsp; 52</p>
<p>2.2. Presenting Landauer s principle 57</p>
<p>2.2.1. Presenting Landauer s principle and other examples&nbsp; 57</p>
<p>2.2.2. Experimental validations of Landauer s principle&nbsp; 64</p>
<p>2.3. Adiabaticity and reversibility&nbsp; 66</p>
<p>2.3.1. Adiabatic principle of charging capacitors&nbsp; 66</p>
<p>2.3.2. Adiabaticity and reversibility: a circuit approach&nbsp; 82</p>
<p>Chapter 3. Transistor Models in CMOS Technology&nbsp; 91</p>
<p>3.1. Reminder on semiconductor properties&nbsp; 91</p>
<p>3.1.1. State densities and semiconductor properties&nbsp; 91</p>
<p>3.1.2. Currents in a semiconductor&nbsp; 100</p>
<p>3.1.3. Contact potentials 102</p>
<p>3.1.4. Metal–oxide semiconductor structure 103</p>
<p>3.1.5. Weak and strong inversion 109</p>
<p>3.2. Long– and short–channel static models 114</p>
<p>3.2.1. Basic principle and brief history of semiconductor technology 114</p>
<p>3.2.2. Transistor architecture and Fermi pseudo–potentials 117</p>
<p>3.2.3. Calculating the current in a long–channel static regime&nbsp; 120</p>
<p>3.2.4. Calculating the current in a short–channel regime 129</p>
<p>3.3. Dynamic transistor models&nbsp; 132</p>
<p>3.3.1. Quasi–static regime&nbsp; 132</p>
<p>3.3.2. Dynamic regime 135</p>
<p>3.3.3. Small signals transistor model&nbsp; 136</p>
<p>Chapter 4. Practical and Theoretical Limits of CMOS Technology 143</p>
<p>4.1. Speed dissipation trade–off and limits of CMOS technology&nbsp; 143</p>
<p>4.1.1. From the transistor to the integrated circuit 143</p>
<p>4.1.2. Trade–off between speed and consumption&nbsp; 146</p>
<p>4.1.3. The trade–off between dynamic consumption and static consumption 149</p>
<p>4.2. Sub–threshold regimes&nbsp; 154</p>
<p>4.2.1. Recall of the weak inversion properties&nbsp; 154</p>
<p>4.2.2. Limits to sub–threshold CMOS technology&nbsp; 160</p>
<p>4.3. Practical and theoretical limits in CMOS technology&nbsp; 162</p>
<p>4.3.1. Economic considerations and evolving methodologies 162</p>
<p>4.3.2. Technological difficulties: dissipation, variability and interconnects&nbsp; 164</p>
<p>4.3.3. Theoretical limits and open questions 171</p>
<p>Chapter 5. Very Low Consumption at System Level&nbsp; 177</p>
<p>5.1. The evolution of power management technologies 177</p>
<p>5.1.1. Basic techniques for reducing dynamic power&nbsp; 177</p>
<p>5.1.2. Basic techniques for reducing static power&nbsp; 180</p>
<p>5.1.3. Designing in 90, 65 and 45 nm technology&nbsp; 185</p>
<p>5.2. Sub–threshold integrated circuits&nbsp; 186</p>
<p>5.2.1. Sub–threshold circuit features&nbsp; 186</p>
<p>5.2.2. Pipeline and parallelization 187</p>
<p>5.2.3. New SRAM structures&nbsp; 187</p>
<p>5.3. Near–threshold circuits&nbsp; 188</p>
<p>5.3.1. Optimization method 189</p>
<p>5.4. Chip interconnect and networks 194</p>
<p>5.4.1. Dissipation in the interconnect 194</p>
<p>5.4.2. Techniques for reducing dissipation in the interconnect&nbsp; 199</p>
<p>Chapter 6. Reversible Computing and Quantum Computing&nbsp; 203</p>
<p>6.1. The basis for reversible computing 203</p>
<p>6.1.1. Introduction&nbsp; 203</p>
<p>6.1.2. Group structure of reversible gates&nbsp; 205</p>
<p>6.1.3. Conservative gates, linearity and affinity 206</p>
<p>6.1.4. Exchange gates&nbsp; 207</p>
<p>6.1.5. Control gates 210</p>
<p>6.1.6. Two basic theorems: no fan–out and no cloning 213</p>
<p>6.2. A few elements for synthesizing a function&nbsp; 214</p>
<p>6.2.1. The problem and constraints on synthesis&nbsp; 214</p>
<p>6.2.2. Synthesizing a reversible function 215</p>
<p>6.2.3. Synthesizing an irreversible function 218</p>
<p>6.2.4. The adder example&nbsp; 219</p>
<p>6.2.5. Hardware implementation of reversible gates&nbsp; 222</p>
<p>6.3. Reversible computing and quantum computing 225</p>
<p>6.3.1. Principles of quantum computing 226</p>
<p>6.3.2. Entanglement 227</p>
<p>6.3.3. A few examples of quantum gates 229</p>
<p>6.3.4. The example of Grover s algorithm&nbsp; 231</p>
<p>Chapter 7. Quasi–adiabatic CMOS Circuits 237</p>
<p>7.1. Adiabatic logic gates in CMOS 237</p>
<p>7.1.1. Implementing the principles of optimal charge and adiabatic pipeline&nbsp; 237</p>
<p>7.1.2. ECRL and PFAL in CMOS 244</p>
<p>7.1.3. Comparison to other gate technologies&nbsp; 250</p>
<p>7.2. Calculation of dissipation in an adiabatic circuit 251</p>
<p>7.2.1. Calculation in the normal regime 251</p>
<p>7.2.2. Calculation in sub–threshold regimes 259</p>
<p>7.3. Energy–recovery supplies and their contribution to dissipation 264</p>
<p>7.3.1. Capacitor–based supply 264</p>
<p>7.3.2. Inductance–based supply 273</p>
<p>7.4. Adiabatic arithmetic architecture&nbsp; 280</p>
<p>7.4.1. Basic principles&nbsp; 280</p>
<p>7.4.2. Adder example&nbsp; 281</p>
<p>7.4.3. The interest in complex gates&nbsp; 283</p>
<p>Chapter 8. Micro–relay Based Technology 285</p>
<p>8.1. The physics of micro–relays 285</p>
<p>8.1.1. Different computing technologies 285</p>
<p>8.1.2. Different actuation technologies&nbsp; 287</p>
<p>8.1.3. Dynamic modeling of microelectro–mechanical relays&nbsp; 290</p>
<p>8.1.4. Implementation examples and technological difficulties&nbsp; 297</p>
<p>8.2. Calculation of dissipation in a micro–relay based circuit 299</p>
<p>8.2.1. Optimization of micro–relays through electrostatic actuation 299</p>
<p>8.2.2. Adiabatic regime solutions 307</p>
<p>8.2.3. Comparison between CMOS logic and micro–relays&nbsp; 312</p>
<p>Bibliography&nbsp; 317</p>
<p>Index 321</p>

Managementboek Top 100

Rubrieken

    Personen

      Trefwoorden

        Ultra Low Power Electronics and Adiabatic Solutions