Energy Geostructures: Innovation in Underground En gineering

Innovation in Underground Engineering

Gebonden Engels 2013 9781848215726
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

Energy geostructures are a tremendous innovation in the field of foundation engineering and are spreading rapidly throughout the world. They allow the procurement of a renewable and clean source of energy which can be used for heating and cooling buildings. This technology couples the structural role of geostructures with the energy supply, using the principle of shallow geothermal energy. This book provides a sound basis in the challenging area of energy geostructures.

The objective of this book is to supply the reader with an exhaustive overview on the most up–to–date and available knowledge of these structures. It details the procedures that are currently being applied in the regions where geostructures are being implemented. The book is divided into three parts, each of which is divided into chapters, and is written by the brightest engineers and researchers in the field. After an introduction to the technology as well as to the main effects induced by temperature variation on the geostructures, Part 1 is devoted to the physical modeling of energy geostructures, including in situ investigations, centrifuge testing and small–scale experiments. The second part includes numerical simulation results of energy piles, tunnels and bridge foundations, while also considering the implementation of such structures in different climatic areas. The final part concerns practical engineering aspects, from the delivery of energy geostructures through the development of design tools for their geotechnical dimensioning. The book concludes with a real case study.

Contents

Part 1. Physical Modeling of Energy Piles at Different Scales
1. Soil Response under Thermomechanical Conditions Imposed by Energy Geostructures, Alice Di Donna and Lyesse Laloui.
2. Full–scale In Situ Testing of Energy Piles, Thomas Mimouni and Lyesse Laloui.
3. Observed Response of Energy Geostructures, Peter Bourne–Webb.
4. Behavior of Heat–Exchanger Piles from Physical Modeling, Anh Minh Tang, Jean–Michel Pereira, Ghazi Hassen and Neda Yavari.
5. Centrifuge Modeling of Energy Foundations, John S. McCartney.
Part 2. Numerical Modeling of Energy Geostructures
6. Alternative Uses of Heat–Exchanger Geostructures, Fabrice Dupray, Thomas Mimouni and Lyesse Laloui.
7. Numerical Analysis of the Bearing Capacity of Thermoactive Piles Under Cyclic Axial Loading, Maria E. Suryatriyastuti, Hussein Mroueh , Sébastien Burlon and Julien Habert.
8. Energy Geostructures in Unsaturated Soils, John S. McCartney, Charles J.R. Coccia , Nahed Alsherif and Melissa A. Stewart.
9. Energy Geostructures in Cooling–Dominated Climates, Ghassan Anis Akrouch, Marcelo Sanchez and Jean–Louis Briaud.
10. Impact of Transient Heat Diffusion of a Thermoactive Pile on the Surrounding Soil, Maria E. Suryatriyastuti, Hussein Mroueh and Sébastien Burlon.
11. Ground–Source Bridge Deck De–icing Systems Using Energy Foundations, C. Guney Olgun and G. Allen Bowers.
Part 3. Engineering Practice
12. Delivery of Energy Geostructures, Peter Bourne–Webb with contributions from Tony Amis,
Jean–Baptiste Bernard, Wolf Friedemann, Nico Von Der Hude, Norbert Pralle, Veli Matti Uotinen and Bernhard Widerin.
13. Thermo–Pile: A Numerical Tool for the Design of Energy Piles, Thomas Mimouni and Lyesse Laloui.
14. A Case Study: The Dock Midfield of Zurich Airport, Daniel Pahud.

About the Authors

Lyesse Laloui is Chair Professor, Head of the Soil Mechanics, Geoengineering and CO2 storage Laboratory and Director of Civil Engineering at the Swiss Federal Institute of Technology (EPFL) in Lausanne, Switzerland.
Alice Di Donna is a researcher at the Laboratory of Soil Mechanics at the Swiss Federal Institute of Technology (EPFL) in Lausanne, Switzerland.

Specificaties

ISBN13:9781848215726
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:318
Serie:ISTE

Lezersrecensies

Wees de eerste die een lezersrecensie schrijft!

Inhoudsopgave

<p>Preface&nbsp;xiii</p>
<p>Lyesse LALOUI and Alice DI DONNA</p>
<p>PART 1. PHYSICAL MODELING OF ENERGY PILES AT DIFFERENT SCALES&nbsp; 1</p>
<p>Chapter 1. Soil Response under Thermomechanical Conditions Imposed by Energy Geostructures 3<br /> Alice DI DONNA and Lyesse LALOUI</p>
<p>1.1. Introduction&nbsp;4</p>
<p>1.2. Thermomechanical behavior of soils 5</p>
<p>1.2.1. Thermomechanical behavior of clays 6</p>
<p>1.3. Constitutive modeling of the thermomechanical behavior of soils&nbsp;12</p>
<p>1.3.1. The ACMEG–T model 12</p>
<p>1.4. Acknowledgments&nbsp;18</p>
<p>1.5. Bibliography 18</p>
<p>Chapter 2. Full–scale In Situ Testing of Energy Piles&nbsp;23<br /> Thomas MIMOUNI and Lyesse LALOUI</p>
<p>2.1. Monitoring the thermomechanical response of energy piles&nbsp;23</p>
<p>2.1.1. Measuring strains and temperature along the piles&nbsp;23</p>
<p>2.1.2. Measuring pile tip compression 27</p>
<p>2.1.3. Monitoring the behavior of the soil&nbsp;27</p>
<p>2.2. Description of the two full–scale in situ experimental sites&nbsp;28</p>
<p>2.2.1. Single full–scale test pile 28</p>
<p>2.2.2. Full–scale test on a group of energy piles 31</p>
<p>2.2.3. Testing procedure&nbsp;32</p>
<p>2.3. Thermomechanical behavior of energy piles&nbsp;36</p>
<p>2.3.1. General methodology 36</p>
<p>2.3.2. Thermomechanical response of the single test pile&nbsp;38</p>
<p>2.3.3. Thermomechanical response of a group of energy piles&nbsp;40</p>
<p>2.4. Conclusions&nbsp;42</p>
<p>2.5. Bibliography&nbsp;42</p>
<p>Chapter 3. Observed Response of Energy Geostructures 45<br /> Peter BOURNE–WEBB</p>
<p>3.1. Overview of published observational data sources&nbsp;45</p>
<p>3.2. Thermal storage and harvesting&nbsp;46</p>
<p>3.2.1. Overview&nbsp;46</p>
<p>3.2.2. Energy injection/extraction rates 47</p>
<p>3.2.3. Thermal fields 52</p>
<p>3.3. Thermomechanical effects 58</p>
<p>3.3.1. Overview&nbsp;58</p>
<p>3.3.2. Structural effects 58</p>
<p>3.3.3. Soil–structure interactions&nbsp;62</p>
<p>3.4. Summary 65</p>
<p>3.5. Acknowledgments&nbsp;66</p>
<p>3.6. Bibliography&nbsp;67</p>
<p>Chapter 4. Behavior of Heat–Exchanger Piles from Physical Modeling&nbsp;79<br /> Anh Minh TANG, Jean–Michel PEREIRA, Ghazi HASSEN and Neda YAVARI</p>
<p>4.1. Introduction&nbsp;79</p>
<p>4.2. Physical modeling of pile foundations&nbsp;80</p>
<p>4.2.1. Boundary conditions 80</p>
<p>4.2.2. Mechanical loading system&nbsp;81</p>
<p>4.2.3. Monitoring 81</p>
<p>4.2.4. Pile s behavior 82</p>
<p>4.3. Physical modeling of a heat–exchanger pile&nbsp;83</p>
<p>4.3.1. Experimental setup 83</p>
<p>4.3.2. Mechanical behavior of a pile under thermomechanical loading&nbsp;85</p>
<p>4.3.3. Heat transfer&nbsp;89</p>
<p>4.3.4. Soil pile interface 90</p>
<p>4.3.5. Lessons learned from physical modeling of a heat–exchanger pile 91</p>
<p>4.4. Conclusions&nbsp;94</p>
<p>4.5. Acknowledgments&nbsp;94</p>
<p>4.6. Bibliography 94</p>
<p>Chapter 5. Centrifuge Modeling of Energy Foundations&nbsp; 99<br /> John S. MCCARTNEY</p>
<p>5.1. Introduction&nbsp;99</p>
<p>5.2. Background on thermomechanical soil structure interaction&nbsp;100</p>
<p>5.3. Centrifuge modeling concepts&nbsp;101</p>
<p>5.4. Centrifuge modeling components 101</p>
<p>5.4.1. Centrifuge model fabrication and characterization&nbsp;101</p>
<p>5.4.2. Experimental setup 103</p>
<p>5.5. Centrifuge modeling tests for semi–floating foundations&nbsp;105</p>
<p>5.5.1. Soil details 105</p>
<p>5.5.2. Foundation A: isothermal load tests to failure 106</p>
<p>5.5.3. Foundation B: thermomechanical stress strain modeling&nbsp;110</p>
<p>5.6. Conclusions&nbsp;113</p>
<p>5.7. Acknowledgments&nbsp;113</p>
<p>5.8. Bibliography 114</p>
<p>PART 2. NUMERICAL MODELING OF ENERGY GEOSTRUCTURES&nbsp; 117</p>
<p>Chapter 6. Alternative Uses of Heat–Exchanger Geostructures 119<br /> Fabrice DUPRAY, Thomas MIMOUNI and Lyesse LALOUI</p>
<p>6.1. Small, dispersed foundations for deck de–icing 120</p>
<p>6.1.1. Heat demand and specificities of small foundations&nbsp;121</p>
<p>6.1.2. Modeling of the pile 122</p>
<p>6.1.3. Results and analysis 126</p>
<p>6.2. Heat–exchanger anchors 131</p>
<p>6.2.1. Technical aspects and possible users 131</p>
<p>6.2.2. Method of investigation&nbsp;132</p>
<p>6.2.3. Optimizing the heat production 134</p>
<p>6.2.4. Mechanical implications of heat production 135</p>
<p>6.3. Conclusions&nbsp;136</p>
<p>6.4. Acknowledgments&nbsp;137</p>
<p>6.5. Bibliography&nbsp;137</p>
<p>Chapter 7. Numerical Analysis of the Bearing Capacity of Thermoactive Piles Under Cyclic Axial Loading&nbsp;139<br /> Maria E. SURYATRIYASTUTI, Hussein MROUEH, S&eacute;bastien BURLON and Julien HABERT</p>
<p>7.1. Introduction 139</p>
<p>7.2. Bearing capacity of a pile under an additional thermal load&nbsp;140</p>
<p>7.3. A constitutive law of soil pile interface under cyclic loading: the Modjoin law&nbsp;143</p>
<p>7.4. Numerical analysis of a thermoactive pile under thermal cyclic loading 145</p>
<p>7.4.1. Reaction to the upper structure&nbsp;147</p>
<p>7.4.2. Normal force in the pile&nbsp;148</p>
<p>7.4.3. Mobilized shaft frictions at the soil pile interface&nbsp;148</p>
<p>7.5. Recommendation for real–scale thermoactive piles 150</p>
<p>7.5.1. Effect of different loading rates for the applied mechanical load&nbsp;150</p>
<p>7.5.2. Effect of thermoactive piles on piled raft foundation&nbsp;150</p>
<p>7.6. Conclusions&nbsp;153</p>
<p>7.7. Acknowledgments&nbsp;153</p>
<p>7.8. Bibliography&nbsp;154</p>
<p>Chapter 8. Energy Geostructures in Unsaturated Soils&nbsp; 157<br /> John S. MCCARTNEY, Charles J.R COCCIA, Nahed ALSHERIF and Melissa A. STEWART</p>
<p>8.1. Introduction&nbsp;157</p>
<p>8.2. Thermally induced water flow 159</p>
<p>8.3. Thermal volume change in unsaturated soils 160</p>
<p>8.4. Thermal effects on soil strength and stiffness&nbsp;161</p>
<p>8.5. Thermal effects on hydraulic properties of unsaturated soils 163</p>
<p>8.6. Thermal effects on soil geosynthetic interaction&nbsp;164</p>
<p>8.7. Conclusions&nbsp;167</p>
<p>8.8. Acknowledgments&nbsp;167</p>
<p>8.9. Bibliography&nbsp;167</p>
<p>Chapter 9. Energy Geostructures in Cooling–Dominated Climates&nbsp; 175<br /> Ghassan Anis AKROUCH, Marcelo SANCHEZ and Jean–Louis BRIAUD</p>
<p>9.1. Introduction&nbsp;175</p>
<p>9.2. Climatic factors and their effects on soil conditions and properties&nbsp;175</p>
<p>9.3. Saturated and unsaturated soil thermal properties and heat transfer&nbsp;177</p>
<p>9.4. Impact of soil conditions on energy geostructures performance&nbsp;179</p>
<p>9.4.1. Laboratory experimental design 179</p>
<p>9.4.2. Numerical modeling 180</p>
<p>9.4.3. Laboratory test and numerical results 183</p>
<p>9.4.4. Modeling the full pile 186</p>
<p>9.5. Full scale tests on energy piles&nbsp; 187</p>
<p>9.6. Conclusions&nbsp;189</p>
<p>9.7. Acknowledgments&nbsp;190</p>
<p>9.8. Bibliography&nbsp;190</p>
<p>Chapter 10. Impact of Transient Heat Diffusion of a Thermoactive Pile on the Surrounding Soil&nbsp; 193<br /> Maria E. SURYATRIYASTUTI, Hussein MROUEH and S&eacute;bastien BURLON</p>
<p>10.1. Introduction&nbsp;193</p>
<p>10.2. Heat transfer phenomenon&nbsp;194</p>
<p>10.2.1. Soil properties 195</p>
<p>10.2.2. Energy conservation in the transient regime 196</p>
<p>10.3. Numerical modeling of thermal diffusion in a thermoactive pile 197</p>
<p>10.3.1. A two–dimensional model internal diffusion in the thermoactive pile 198</p>
<p>10.3.2. A three–dimensional model external diffusion to the surrounding soil&nbsp;201</p>
<p>10.4. Impact of the long–term thermal operation&nbsp;202</p>
<p>10.4.1. Groundwater flow effect on the heat diffusion 202</p>
<p>10.4.2. Mechanical durability under thermal cyclic stress&nbsp;205</p>
<p>10.5. Conclusions&nbsp;205</p>
<p>10.6. Acknowledgments 207</p>
<p>10.7. Bibliography 208</p>
<p>Chapter 11. Ground–Source Bridge Deck De–icing Systems Using Energy Foundations 211<br /> C. Guney OLGUN and G. Allen BOWERS</p>
<p>11.1. Introduction&nbsp;211</p>
<p>11.2. Ground–source heating of bridge decks&nbsp;213</p>
<p>11.3. Thermal processes and evaluation of energy demand for ground–source de–icing systems&nbsp;214</p>
<p>11.4. Numerical modeling and analysis results&nbsp;216</p>
<p>11.5. Summary and conclusions&nbsp;223</p>
<p>11.6. Acknowledgments 223</p>
<p>11.7. Bibliography 224</p>
<p>PART 3. ENGINEERING PRACTICE 227</p>
<p>Chapter 12. Delivery of Energy Geostructures 229<br /> Peter BOURNE–WEBB with contributions from Tony AMIS, Jean–Baptiste BERNARD, Wolf FRIEDEMANN, Nico VON DER HUDE, Norbert PRALLE, Veli Matti UOTINEN and Bernhard WIDERIN</p>
<p>12.1. Introduction 229</p>
<p>12.2. Planning and design&nbsp;230</p>
<p>12.2.1. Coordination and communication&nbsp;230</p>
<p>12.2.2. Design management 231</p>
<p>12.2.3. System design redundancy&nbsp;231</p>
<p>12.2.4. Awareness and skills training&nbsp;234</p>
<p>12.3. Construction 236</p>
<p>12.3.1. Process quality control&nbsp;236</p>
<p>12.3.2. Installation details 237</p>
<p>12.4. System integration and commissioning&nbsp;260</p>
<p>12.5. Summary&nbsp;261</p>
<p>12.6. Acknowledgments 262</p>
<p>12.7. Bibliography 262</p>
<p>Chapter 13. Thermo–Pile: A Numerical Tool for the Design of Energy Piles&nbsp;265<br /> Thomas MIMOUNI and Lyesse LALOUI</p>
<p>13.1. Basic assumptions 265</p>
<p>13.2. Mathematical formulation and numerical implementation&nbsp;266</p>
<p>13.2.1. The load–transfer method 266</p>
<p>13.2.2. Displacements induced by the mechanical load 268</p>
<p>13.2.3. Displacements induced by the thermal load 269</p>
<p>13.3. Validation of the method 270</p>
<p>13.4. Piled–beams with energy piles&nbsp;271</p>
<p>13.4.1. General method&nbsp;272</p>
<p>13.4.2. Determination of the integration constants&nbsp;275</p>
<p>13.4.3. Example of simulation&nbsp;276</p>
<p>13.5. Conclusions&nbsp;277</p>
<p>13.6. Acknowledgments 278</p>
<p>13.7. Bibliography 278</p>
<p>Chapter 14. A Case Study: The Dock Midfield of Zurich Airport 281<br /> Daniel PAHUD</p>
<p>14.1. The Dock Midfield&nbsp;281</p>
<p>14.2. Design process of the energy pile system&nbsp;282</p>
<p>14.2.1. Pile system concept 282</p>
<p>14.2.2. Problems to solve 283</p>
<p>14.2.3. First calculations 284</p>
<p>14.2.4. Second calculations 285</p>
<p>14.2.5. Third calculations 287</p>
<p>14.2.6. Final simulations using the TRNSYS program&nbsp;288</p>
<p>14.3. The PILESIM program 288</p>
<p>14.4. System design and measurement points 289</p>
<p>14.5. Measured thermal performances of the system 291</p>
<p>14.6. System optimization and integration 293</p>
<p>14.7. Conclusions 294</p>
<p>14.8. Acknowledgments 295</p>
<p>14.9. Bibliography 295</p>
<p>List of Authors 297</p>
<p>Index 299</p>

Managementboek Top 100

Rubrieken

    Personen

      Trefwoorden

        Energy Geostructures: Innovation in Underground En gineering