Hybrid Systems with Constraints

Gebonden Engels 2013 9781848215276
Verwachte levertijd ongeveer 16 werkdagen

Samenvatting

Control theory is the main subject of this title, in particular analysis and control design for hybrid dynamic systems.
The notion of hybrid systems offers a strong theoretical and unified framework to cope with the modeling, analysis and control design of systems where both continuous and discrete dynamics interact. The theory of hybrid systems has been the subject of intensive research over the last decade and a large number of diverse and challenging problems have been investigated. Nevertheless, many important mathematical problems remain open.
This book is dedicated mainly to hybrid systems with constraints; taking constraints into account in a dynamic system description has always been a critical issue in control. New tools are provided here for stability analysis and control design for hybrid systems with operating constraints and performance specifications.

Contents

1. Positive Systems: Discretization with Positivity and Constraints, Patrizio Colaneri, Marcello Farina, Stephen Kirkland, Riccardo Scattolini and Robert Shorten.
2. Advanced Lyapunov Functions for Lur e Systems, Carlos A. Gonzaga, Marc Jungers and Jamal Daafouz.
3. Stability of Switched DAEs, Stephan Trenn.
4. Stabilization of Persistently Excited Linear Systems, Yacine Chitour, Guilherme Mazanti and Mario Sigalotti.
5. Hybrid Coordination of Flow Networks, Claudio De Persis, Paolo Frasca.
6. Control of Hybrid Systems: An Overview of Recent Advances, Ricardo G. Sanfelice.
7. Exponential Stability for Hybrid Systems with Saturations, Mirko Fiacchini, Sophie Tarbouriech, Christophe Prieur.
8. Reference Mirroring for Control with Impacts, Fulvio Forni, Andrew R. Teel, Luca Zaccarian.

About the Authors

Jamal Daafouz is an expert in the area of switched and polytopic systems and has published several major results in leading journals (IEEE TAC, Automatica, Systems and Control Letters, etc.). He serves as an Associate Editor for the key journal IEEE TAC and is a member of the Editorial Board of the IEEE CSS society.
Sophie Tarbouriech is an expert in the area of nonlinear systems with constraints and has published several major results in leading journals (IEEE TAC, Automatica, Systems and Control Letters, etc.) and books. She is a member of the Editorial Board of the IEEE CSS society and has also served as an Associate Editor for the key journal IEEE TAC.
Mario Sigalotti is an expert in applied mathematics and switched systems and has published several results in leading journals (IEEE TAC, Automatica, Systems and Control Letters, etc.). He heads the INRIA team GECO and is a member of the IFAC Technical Committee on Distributed Parameter Systems.

Specificaties

ISBN13:9781848215276
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:276
Serie:ISTE

Lezersrecensies

Wees de eerste die een lezersrecensie schrijft!

Inhoudsopgave

<p>Preface&nbsp;xi</p>
<p>Chapter 1. Positive Systems: Discretization with Positivity and Constraints&nbsp;1<br /> Patrizio COLANERI, Marcello FARINA, Stephen KIRKLAND, Riccardo SCATTOLINI and Robert SHORTEN</p>
<p>1.1. Introduction and statement of the problem&nbsp;1</p>
<p>1.2. Discretization of switched positive systems via Pad&eacute; transformations&nbsp;4</p>
<p>1.2.1. Preservation of copositive Lyapunov functions&nbsp;4</p>
<p>1.2.2. Non–negativity of the diagonal Pad&eacute; approximation&nbsp;7</p>
<p>1.2.3. An alternative approximation to the exponential matrix&nbsp;9</p>
<p>1.3. Discretization of positive switched systems with sparsity constraints&nbsp;10</p>
<p>1.3.1. Forward Euler discretization&nbsp;10</p>
<p>1.3.2. The mixed Euler–ZOH discretization&nbsp;11</p>
<p>1.3.3. The mixed Euler–ZOH discretization for switched systems&nbsp;14</p>
<p>1.4. Conclusions&nbsp;18</p>
<p>1.5. Bibliography 18</p>
<p>Chapter 2. Advanced Lyapunov Functions for Lur e Systems&nbsp;21<br /> Carlos A. GONZAGA, Marc JUNGERS and Jamal DAAFOUZ</p>
<p>2.1. Introduction&nbsp;21</p>
<p>2.2. Motivating example&nbsp;24</p>
<p>2.3. A new Lyapunov Lur e–type function for discrete–time Lur e systems 26</p>
<p>2.3.1. Definition of discrete–time Lur e systems&nbsp;26</p>
<p>2.3.2. Introduction of a new discrete–time Lyapunov Lur e–type function&nbsp;26</p>
<p>2.3.3. Global stability analysis&nbsp;29</p>
<p>2.3.4. Local stability analysis 30</p>
<p>2.4. Switched discrete–time Lur e system with arbitrary switching law 37</p>
<p>2.4.1. Definition of the switched discrete–time Lur e system 37</p>
<p>2.4.2. Switched discrete–time Lyapunov Lur e–type function 38</p>
<p>2.4.3. Global stability analysis&nbsp;38</p>
<p>2.4.4. Local stability analysis 40</p>
<p>2.5. Switched discrete–time Lur e system controlled by the switching law&nbsp;46</p>
<p>2.5.1. Global stabilization&nbsp;46</p>
<p>2.5.2. Local stabilization&nbsp;48</p>
<p>2.6. Conclusion&nbsp;51</p>
<p>2.7. Bibliography&nbsp;52</p>
<p>Chapter 3. Stability of Switched DAEs 57<br /> Stephan TRENN</p>
<p>3.1. Introduction&nbsp;57</p>
<p>3.1.1. Systems class: definition and motivation 57</p>
<p>3.1.2. Examples&nbsp;59</p>
<p>3.2. Preliminaries&nbsp;62</p>
<p>3.2.1. Non–switched DAEs: solutions and consistency projector 62</p>
<p>3.2.2. Lyapunov functions for non–switched DAEs 66</p>
<p>3.2.3. Classical distribution theory&nbsp;67</p>
<p>3.2.4. Piecewise–smooth distributions and solvability of [3.1]&nbsp;69</p>
<p>3.3. Stability results&nbsp;71</p>
<p>3.3.1. Stability under arbitrary switching 72</p>
<p>3.3.2. Slow switching&nbsp;74</p>
<p>3.3.3. Commutativity and stability&nbsp;75</p>
<p>3.3.4. Lyapunov exponent and converse Lyapunov theorem 77</p>
<p>3.4. Conclusion&nbsp;81</p>
<p>3.5. Acknowledgments&nbsp;81</p>
<p>3.6. Bibliography&nbsp;81</p>
<p>Chapter 4. Stabilization of Persistently Excited Linear Systems 85<br /> Yacine CHITOUR, Guilherme MAZANTI and Mario SIGALOTTI</p>
<p>4.1. Introduction&nbsp;86</p>
<p>4.2. Finite–dimensional systems&nbsp;89</p>
<p>4.2.1. The neutrally stable case&nbsp;90</p>
<p>4.2.2. Spectra with non–positive real part 91</p>
<p>4.2.3. Arbitrary rate of convergence&nbsp;97</p>
<p>4.3. Infinite–dimensional systems&nbsp;101</p>
<p>4.3.1. Exponential stability under persistent excitation&nbsp;103</p>
<p>4.3.2. Weak stability under persistent excitation&nbsp;105</p>
<p>4.3.3. Other conditions of excitation&nbsp;106</p>
<p>4.4. Further discussion and open problems&nbsp;110</p>
<p>4.4.1. Lyapunov–based arguments for the existing results 111</p>
<p>4.4.2. Generalization of theorem 4.5 to higher dimensions&nbsp;111</p>
<p>4.4.3. Generalizations of theorem 4.8 112</p>
<p>4.4.4. Properties of (A, T ) 116</p>
<p>4.4.5. Stabilizability at an arbitrary rate for systems with several inputs&nbsp;117</p>
<p>4.4.6. Infinite–dimensional systems&nbsp;118</p>
<p>4.5. Bibliography 118</p>
<p>Chapter 5. Hybrid Coordination of Flow Networks&nbsp; 121<br /> Claudio De PERSIS, Paolo FRASCA</p>
<p>5.1. Introduction&nbsp;121</p>
<p>5.2. Flow network model and problem statement&nbsp;123</p>
<p>5.2.1. Load balancing&nbsp;124</p>
<p>5.3. Self–triggered gossiping control of flow networks&nbsp;125</p>
<p>5.4. Practical load balancing&nbsp;127</p>
<p>5.5. Load balancing with delayed actuation and skewed clocks&nbsp;132</p>
<p>5.6. Asymptotical load balancing&nbsp;136</p>
<p>5.7. Conclusions&nbsp;141</p>
<p>5.8. Acknowledgments&nbsp;141</p>
<p>5.9. Bibliography 141</p>
<p>Chapter 6. Control of Hybrid Systems: An Overview of Recent Advances 145<br /> Ricardo G. SANFELICE</p>
<p>6.1. Introduction&nbsp;145</p>
<p>6.2. Preliminaries&nbsp;149</p>
<p>6.2.1. Notation&nbsp;149</p>
<p>6.2.2. Notion of solution for hybrid systems&nbsp;150</p>
<p>6.3. Stabilization of hybrid systems&nbsp;151</p>
<p>6.4. Static state feedback stabilizers&nbsp;155</p>
<p>6.4.1. Existence of continuous static stabilizers&nbsp;157</p>
<p>6.5. Passivity–based control 159</p>
<p>6.5.1. Passivity 160</p>
<p>6.5.2. Linking passivity to asymptotic stability 164</p>
<p>6.5.3. A construction of passivity–based controllers 167</p>
<p>6.6. Tracking control 169</p>
<p>6.7. Conclusions&nbsp;176</p>
<p>6.8. Acknowledgments&nbsp;176</p>
<p>6.9. Bibliography 177</p>
<p>Chapter 7. Exponential Stability for Hybrid Systems with Saturations&nbsp; 179<br /> Mirko FIACCHINI, Sophie TARBOURIECH, Christophe PRIEUR</p>
<p>7.1. Introduction&nbsp;179</p>
<p>7.2. Problem statement&nbsp;181</p>
<p>7.2.1. Saturated reset systems&nbsp;182</p>
<p>7.3. Set theory and invariance for nonlinear systems: brief overview 185</p>
<p>7.3.1. Invariance for convex difference inclusions&nbsp;186</p>
<p>7.4. Quadratic stability for saturated hybrid systems&nbsp;190</p>
<p>7.4.1. Set–valued extensions of saturated functions 190</p>
<p>7.4.2. Continuous–time quadratic stability&nbsp;192</p>
<p>7.4.3. Discrete–time quadratic stability&nbsp;194</p>
<p>7.4.4. Exponential stability for saturated hybrid systems 195</p>
<p>7.4.5. Exponential Lyapunov functions for saturated hybrid systems&nbsp;198</p>
<p>7.5. Computational issues&nbsp;203</p>
<p>7.6. Numerical examples&nbsp;205</p>
<p>7.7. Conclusions&nbsp;207</p>
<p>7.8. Bibliography&nbsp;208</p>
<p>Chapter 8. Reference Mirroring for Control with Impacts&nbsp;&nbsp;213<br /> Fulvio FORNI, Andrew R. TEEL, Luca ZACCARIAN</p>
<p>8.1. Introduction&nbsp;213</p>
<p>8.2. Hammering a surface&nbsp;216</p>
<p>8.2.1. The reference hammer dynamics&nbsp;216</p>
<p>8.2.2. Using dwell–time logic to avoid Zeno solutions&nbsp;218</p>
<p>8.2.3. The controlled hammer dynamics 219</p>
<p>8.2.4. Instability with standard feedback tracking&nbsp;220</p>
<p>8.2.5. Using a mirrored reference to design a hybrid stabilizer&nbsp;221</p>
<p>8.3. Global tracking of a Newton s cradle 224</p>
<p>8.3.1. The reference cradle&nbsp;224</p>
<p>8.3.2. The controlled cradle 225</p>
<p>8.3.3. Using a mirrored reference to design a hybrid stabilizer&nbsp;226</p>
<p>8.3.4. Simulations 229</p>
<p>8.4. Global tracking in planar triangles&nbsp;230</p>
<p>8.4.1. The reference mass&nbsp;231</p>
<p>8.4.2. The controlled mass&nbsp;233</p>
<p>8.4.3. Using a family of mirrored references to design a hybrid stabilizer 233</p>
<p>8.4.4. Simulations 239</p>
<p>8.5. Global state estimation on n–dimensional convex polyhedra 240</p>
<p>8.5.1. The reference dynamics&nbsp;241</p>
<p>8.5.2. The observer dynamics&nbsp;243</p>
<p>8.5.3. Estimation by hybrid reformulation of the observer dynamics&nbsp;244</p>
<p>8.5.4. Simulations&nbsp;246</p>
<p>8.6. Proof of the main theorems 247</p>
<p>8.6.1. A useful Lyapunov result&nbsp;247</p>
<p>8.6.2. Proofs of theorems 8.1 8.4&nbsp;248</p>
<p>8.7. Conclusions&nbsp;251</p>
<p>8.8. Acknowledgments&nbsp;252</p>
<p>8.9. Bibliography&nbsp;252</p>
<p>List of Authors 257</p>
<p>Index 261</p>

Managementboek Top 100

Rubrieken

    Personen

      Trefwoorden

        Hybrid Systems with Constraints