Chemical Bonds Outside Metal Surfaces

Paperback Engels 2011 9781461292524
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

The problem of molecules interacting with metal surfaces has for a very long time been recognized to be of considerable technological as well as fundamental importance. Thus in the former category, a substantial number of important synthetic reactions for industrial purposes make use of metal surfaces as catalysts. Or again, problems of corrosion of metals are of great practical importance, such as in nuclear-reactor technology [see, for instance, my earlier articles, in: Physics Bulletin, Volume 25, p. 582, Institute of Physics, UK (1974); and in: Physics and Contemporqry Needs (Riazuddin, ed. ), Vol. 1, p. 53, Plenum Press, New York (1977)]. It is therefore of significance to strive to gain a more fundamental understand­ ing of the atomic, and ultimately the electronic, processes that occur when a molecule is brought into the proximity of a metal surface. The present volume focuses mainly on the theory and concepts involved; however, it is intended for readers in chemistry, physics, and materials science who are not specialists in theory but nevertheless wish to learn more about this truly interdisciplinary area of theoretical science. The aim of the book is to present the way in which valence theory can be synthesized with the understanding of metals that has been gained over the last half century or so. While advanced theory has at times been necessary, is largely presented in an extensive set of Appendixes.

Specificaties

ISBN13:9781461292524
Taal:Engels
Bindwijze:paperback
Aantal pagina's:294
Uitgever:Springer US
Druk:0

Lezersrecensies

Wees de eerste die een lezersrecensie schrijft!

Inhoudsopgave

1. Background, Phenomenology, and Motivation.- 1.1. Chemisorption in Ionic and Covalent Limits.- 1.1.1. Ionic Bond Formation.- 1.1.2. Covalently Bonded Cases.- 1.2. Kinetics of Adsorption and Desorption.- 1.3. Thermodynamics of Adsorption.- 1.3.1. Langmuir Isotherm.- 1.3.2. Multilayer Adsorption Theory.- 1.4. Reaction Mechanisms Outside Surfaces.- 1.4.1. Langmuir-Hinshelwood and Rideal-Eley Mechanisms.- 1.4.2. Redhead Equation for Desorption Rate.- 1.5. Case History of Catalytic Hydrogenation of Carbon Monoxide.- 1.5.1. Thermodynamics.- 1.5.2. Chemisorption Studies of CO and H2.- 1.5.3. Selectivity.- 1.5.4. Mechanism.- 2. Diatomic Molecules.- 2.1. Physisorbed Diatoms with Weil-Defined Cores.- 2.1.1. Image Theory of the Dispersion Force.- 2.2. Interaction Between Two Hydrogen Atoms.- 2.2.1. Physisorbed H2.- 2.2.2. Protons Embedded in the Spill-Out Metal Electron Clouds.- 2.3. Interaction Energy: Tight-Binding Model.- 2.3.1. Range of Validity: Anisotropic Effects, Adatom-Substrate Coupling, and Energy-Level Matching.- 2.4. Molecular Versus Dissociative Adsorption.- 2.4.1. Pauling’s Treatment of Bond Energies.- 2.4.2. Bonding and Valence in Transition Metals.- 2.4.3. Admolecule Bonding to a Metal Surface.- 2.4.4. Chemisorption of N2, O2, CO, and NO.- 2.5. Detailed Bonding Studies.- 2.5.1. Nitrogen on Metal Surfaces.- 2.5.2. Cluster Modeling of NO on Ni.- 2.5.3. Limitations and Convergence Properties of Cluster Calculations.- 2.6. Electronically Excited States of Chemisorbed Diatoms.- 2.6.1. EELS Study of Weakly Adsorbed Systems.- 2.6.2. Summary of Assignments.- 2.7. Orientation of Molecular Adsorbates.- 2.8. Temperature Effects, and Comparison Between Theory and Experiment.- 3. Conformation and Electronic Structure of Polyatomic Molecules.- 3.1. Conformation of a Water Molecule Outside a Metal Surface.- 3.1.1. Valence Theory of Free-Space Conformation.- 3.1.2. Interaction Energy in a Water Molecule.- 3.1.3. Introduction of the Image Potential.- 3.1.4. Effect of the Surface on Hybridization.- 3.1.5. Results and Discussion.- 3.2. Conformation of NH3 and C2H4 Molecules.- 3.2.1. Interaction Between Lone Pair and Image for NH3.- 3.2.2. Adsorption of Ethylene on a Planar Metal Surface.- 3.2.3. Cluster Approach to the Electronic-Level Structure of Ethylene on Ni(100).- 3.3. Molecular Versus Dissociative Adsorption of NH3 on Transition-Metal Surfaces.- 3.4. Electronic Structure and Conformation of Ethene on Transition- and Noble-Metal Surfaces.- 3.4.1. Conformation of Ethene on Metal Surfaces.- 3.4.2. Tight-Binding Model of ?-Levels of Adsorbed Ethene.- 3.4.3. Effect of the Surface on ?-Levels.- 3.4.4. ?-Orbital Bonding and Charge Transfer Between Molecule and Metal.- 3.5. Interaction Between Adsorbates.- 3.5.1. Hydrogen-Bonded Clusters of H2O.- 3.5.2. Some Organic Molecules.- 3.6. Electronic Excited States of Chemisorbed Polyatomic Molecules.- 4. Dynamics of Adparticles and Neutron Inelastic Scattering.- 4.1. Principles of Neutron Scattering from Adsorbed Molecules.- 4.2. Comparison With Other Surface Techniques.- 4.3. Diffusion Measurements.- 4.4. Theory.- 4.4.1. Influence of Diffusion on Scattering Cross-Section.- 4.5. Electronic and Vibration-Rotation Spectra of Adsorbed Molecules.- 4.6. Adsorbate Frequency Shifts.- 4.6.1. Influence of n-Fold Coordination.- 4.6.2. Intensity in Local Mode at Adsorbate Site.- 4.7. Theoretical Framework for Interpreting Neutron Inelastic Scattering From Covered Surfaces.- 4.7.1. Description of the Model.- 4.7.2. Coupling of an Adparticle to a Two-Dimensional Square Lattice.- 4.7.3. Interpretation of Neutron Intensity for Hydrogen on Platinum.- 4.8. Theory of Surface Diffusion.- 4.9. Vibration Excitation in Molecule-Surface Collisions Due to Temporary Negative Molecular-Ion Formation.- 4.10. Adparticle Dynamics: Kramers’ Equation in a Metallic Medium.- 4.10.1. Electronic Contribution to the Surface-Friction Constant.- 4.10.2. Introduction of Inhomogeneity at a Metal Surface.- 4.10.3. Long-Range Dynamic Interaction Between Adatoms.- 5. Molecular Desorption.- 5.1. Kramers’ Theory Generalized to Desorption From Solid Surfaces.- 5.1.1. Derivation of the Rate Equation.- 5.1.2. Rate of Desorption of Atoms.- 5.1.3. Rate of Desorption of Molecules.- 5.1.4. Results: Atomic and Molecular Desorption.- 5.2. Transition-State Theory Applied to Desorption From Solid Surfaces: Ammonia on Ni(111).- 5.2.1. Rate of Molecular Desorption.- 5.3. Microscopic Theories.- 5.3.1. One-Phonon Approximation.- 5.3.2. Atom-Phonon Interaction.- 5.4. Quantum-Statistical Theory of Physisorption.- 5.4.1. Flash Desorption.- 5.4.2. Isothermal Desorption.- 5.4.3. Limitations of the Relaxation-Time Approach to Desorption.- 5.5. Coverage-Dependent Regime.- 5.5.1. Mean-Field Theory of Physisorption.- 5.5.2. Kramers’ Theory.- 5.6. Desorption Induced by Electronic Transitions.- 5.6.1. Menzel—Gomer—Redhead Model.- 5.6.2. Knotek—Feibelman Mechanism of Initial Excitation.- 5.6.3. Structural Information From Photon-Stimulated Desorption.- 5.6.4. Theory of Angle-Resolved Electron- and Photon-Stimulated Desorption.- 5.6.5. Electron-Stimulated Molecular Desorption From Metals.- 6. Catalysis.- 6.1. Some Definitions and Concepts.- 6.1.1. Specific Rate.- 6.1.2. Reaction Probability.- 6.1.3. Elementary Reaction Steps.- 6.2. XPS Studies of Desorption and Dissociation Processes.- 6.2.1. Photoelectron Spectroscopy in Relation to Heterogeneous Catalysis.- 6.3. Compensation Effect.- 6.3.1. Theoretical Basis.- 6.3.2. Compensation Temperature Tc.- 6.4. Relevance of Woodward—Hoffmann Rules to Single-Crystal Catalysts.- 6.4.1. Classification of Symmetry-Allowed or Forbidden Reactions.- 6.4.2. Symmetry-Conservation Rules.- 6.4.3. Use of a Correlation Diagram in Understanding the Activation Barrier.- 6.4.4. Can Symmetry Effects Alone Explain Nitric-Oxide Decomposition on Platinum?.- 6.5. Electronic Structure Study of a “Poisoned” Catalyst Surface…..- 6.6. Chemical Oscillations.- 6.6.1. Nature of Rate Equations.- Appendixes.- 1.1. Surface Characterization Techniques Used to Determine Structure and Composition of Solid Surfaces.- 2.1. Density Matrix and Linear-Response Function of the Infinite-Barrier Model of a Metal Surface.- 2.2. Influence of Fermi-Surface Topology on Asymptotic Displaced-Charge Round Adatoms.- 2.3. Correlation Effects for Hydrogen Chemisorbed on Transition Metals.- 2.4. Lifetimes of Excited States of Molecules Well Outside Metal Surfaces: a Model Calculation.- 3.2. Parametrization of the Tight-Binding Model of Ethene.- 3.3. Parametrization of the Anderson Hamiltonian Describing the ?-Energy Levels of the Free Ethene Molecule.- 4.1. Three-Dimensional Treatment of the Escape of a Brownian Particle From a Well.- 4.2. Dynamics of a Brownian Particle in a Fluid: Derivation of Stochastic Elements.- 4.3. Variational Principle for the Optimum Reaction Coordinate in Diffusion-Controlled Reactions.- 4.4. Anisotropic Screening of an Adatom Near a Metal Surface.- 5.1. Spin Fluctuations and Desorption of Hydrogen From Paramagnetic Metals.- 5.2. Anomalies in Adsorption Equilibrium Near Critical Points of a Substrate.- 6.1. Symmetry Rules Based on the Surface Electronic Structure of Various Platinum Surfaces.- 6.3. Analysis of Rate Equations Describing Chemical Oscillations.- 6.4. Proposed Reaction Sequence for Fischer-Tropsch Synthesis.- 6.5. Dissociative Chemisorption — A Primitive Surface Chemical Process.- 6.6. Nonlinear Rate Equations and the Compensation Effect.- Notes Added in Proof.- References.

Managementboek Top 100

Rubrieken

    Personen

      Trefwoorden

        Chemical Bonds Outside Metal Surfaces