1. Fundamental Aspects of Electron Transfer at Interfaces.- 1. Introduction.- 2. The Chemical and Electrical Implications of Charge Transfer at Interfaces.- 3. Energy Conversion: A Basic Difference between Chemical and Electrochemical Reactions.- 4. Electrochemical Kinetics.- 4.1. The Equivalence of Current Density at an Interface and Reaction Rate.- 4.2. Two-Way Electron Transfer Across an Interface.- 4.3. The Butler—Volmer Equation: The Rate of an Electrochemical Reaction at a Given Degree of Displacement from Equilibrium.- 4.4. The Measurement of Potential in Electrochemical Reactions.- 4.5. The Electrical Control of Charge Transfer Reactions.- 4.6. Transport Control at the Interface.- 4.7. Potential—Current Relation under Transport Control.- 4.8. The General Relationship between Current and Potential at an Interface.- 5. Phenomena Connected with Tunneling at an Interface.- 5.1. The Interfacial Barrier and Its Penetration.- 5.2. Distribution of Electronic States at the Interface.- 5.3. The Effect of Surface States upon the Distribution of Potential at the Semiconductor—Solution Interface.- 5.4. Fermi Levels in the Semiconductor and in the Solution.- 6. The Current—Potential Relation at the Semiconductor—Solution Interface.- 6.1. General.- 6.2. Rate-Determining Step at the Semiconductor—Solution Interface.- 7. Insulator—Solution Interfaces.- 7.1. General.- 7.2. Double Layer at the Insulator—Solution Interface.- 7.3. The Current—Potential Relation at the Insulator—Solution Interface.- References.- 2. The Origin of Cellular Electrical Potentials.- 1. Early History.- 1.1. The Founding of Colloid Chemistry and the Membrane Theory.- 1.2. The Founding of the Membrane Theory of Cell Potentials by Bernstein.- 1.3. The Ionic Theory of Cell Potential by Hodgkin, Huxley, and Katz.- 2. The Energy Available vs. Energy Required to Operate the Na+ Pump.- 3. The Association—Induction (AI) Hypothesis.- 3.1. State of Cell K+.- 3.2. State of Cell Water.- 4. The Surface Adsorption Theory of Cell Potential—A Subsidiary Theory of the AI Hypothesis.- 4.1. The Earlier Model.- 4.2. An Improved Theory of Cellular Resting Potential Incorporating Cooperative Interaction among Surface Anionic Sites.- 4.3. The Action Potential.- Acknowledgments.- References.- 3. Electrodic Chemistry in Biology.- 1. Introduction.- 2. The Membrane Potential.- 2.1. The Four Classical Membrane Potential Treatments.- 3. The Possibilities of an Electrodic Aspect in Biology.- 4. Electrodic Electrochemistry in Biology.- 4.1. Earlier Electrodic Suggestions.- 4.2. Is Heat Generation of the Body Consistent with the Electrochemical Functioning of Cells?.- 5. Redox Electrode Kinetics at Membrane Bielectrodes.- 6. An Electrodic Model for the Membrane Potential.- 7. Application of the Goldmann Equation.- 8. Electrochemistry in Biomedical Sciences.- 9. Electrochemical Models for Biological Energy Conversion.- 10. General Considerations.- 11. Future Applications to Cancer and Arteriosclerosis.- 12. Conclusion.- Acknowledgments.- References.- 4. Elementary Analysis of Chemical Electric Field Effects in Biological Macromolecules. I. Thermodynamic Foundations.- 1. Introduction.- 2. Primary Aspects of Matter in Electric Fields.- 2.1. Electrical—Chemical Coupling.- 2.2. Elementary Chemical Processes.- 2.3. Biological and Experimental Electric Fields.- 2.4. Biopolymers.- 3. General Thermodynamic Foundations.- 3.1. General Reaction Parameters.- 3.2. General van’t Hoff Relations.- 3.3. Transition Curves.- 3.4. Chemical Affinity.- 3.5. Application Limits.- 3.6. Electrochemical Potential.- 3.7. “Dielectrochemical” Potential.- 4. Thermodynamics in Electric Fields.- 4.1. The Characteristic Gibbs Function.- 4.2. Dielectrochemical Affinity.- 4.3. Activity Coefficients.- 4.4. Van’t Hoff Relationship.- Acknowledgments.- List of Symbols.- References.- 5. Elementary Analysis of Chemical Electric Field Effects in Biological Macromolecules. II. Kinetic Aspects of Electro-Optic and Conductometric Relaxations.- 1. Introduction.- 2. Rate Constants in Electric Fields.- 2.1. Dipolar Equilibria.- 2.2. Ionic Equilibria.- 3. Reaction Moment and Electric—Chemical Mechanism.- 3.1. Reaction Moments from Dielectric Data.- 3.2. Permanent and Induced Dipole Moments.- 3.3. Reaction Moment and Equilibrium Constant.- 3.4. Reactions in Polar Media.- 3.5. Induced Dipole Moments in Polyionic Macromolecules.- 4. Measurement of Electric Field Effects.- 4.1. Chemical Relaxations.- 4.2. Indication of Concentration Changes.- 4.3. Component Contributions to Absorbance.- 4.4. Linear Dichroism.- 4.5. Chemical Transition Factor.- 4.6. Differentiation between Component Contributions.- 5. Macromolecular Cooperativity and Hysteresis.- Note Added in Proof.- Acknowledgments.- References.- 6. Some Aspects of Charge Transfer in Biological Systems.- 1. Introduction.- 2. Solitons.- 3. Conduction and Biological Structure.- 4. Hydration and Charge Transfer.- 4.1. Proteins.- 4.2. Cytochromes.- 5. Charge Transfer and Adsorption. Surface Effects.- 5.1. Introduction.- 5.2. Membranes.- 6. Proton Transfer Complexes.- Acknowledgments.- References.- 7. Ion, Electron, and Proton Transport in Membranes: A Review of the Physical Processes Involved.- 1. Introduction.- 1.1. Ions, Electrons, and Protons in Cell Membranes.- 2. Ion Transport.- 2.1. Membrane Potential.- 2.2. Dielectric Properties of Biological Water.- 2.3. Ion Pores.- 3. Electron Transport.- 3.1. Tunneling.- 3.2. Electron Delocalization.- 3.3. Electronic Induction and Displacement Effects.- 4. Proton Transport.- 4.1. Water and Ice Models.- 4.2. Other Model Systems.- 5. Concluding Remarks.- References.- 8. Coherent Excitation in Active Biological Systems.- 1. General.- 2. Coherent Excitations.- 3. Consequences.- 4. Experiments.- References.- 9. Collective Properties of Biological Systems: Solitons and Coherent Electric Waves in a Quantum Field Theoretical Approach.- 1. Introduction.- 2. Solitons, Electrets, and Fröhlich Waves.- 3. Boson Condensation and Collective Modes.- 3.1. Davydov Soliton Regime.- 3.2. Fröhlich Regime.- 4. Phenomenological Evidence.- 4.1. Solitons on Macromolecules.- 4.2. Water in Biological Systems.- 4.3. Coherent Electric Waves in Living Matter.- References.- 10. Electrostatic Modulation of Electromagnetically Induced Nonthermal Responses in Biological Membranes.- 1. Introduction.- 2. Background and Review of Theoretical Models to Explain Coupling of Electromagnetic Fields to Membranes.- 3. Cooperative Coupling between Membranes and External Fields.- 4. Role of Membrane Surface Charge in Modulating Cooperative Responses to External Stimuli.- 5. Alterations in Electrical Double Layer Structure by an External Field Coupling to the Membrane.- 6. Conclusion.- Acknowledgments.- References.- 11. Differential Energy Control and the Dielectric Structure of Cells.- 1. Introduction.- 2. Cell Transformation.- 3. Determination of Dielectric Structure of Cells by Inversion of Their Raman Spectra.- 4. Results.- 5. Discussion of Results.- References.- 12. Biological Dielectrophoresis: The Behavior of Biologically Significant Materials in Nonuniform Electric Fields.- 1. Introduction.- 2. Dielectrophoresis.- 3. Historical Perspective.- 4. Theory of Dielectrophoretic Force.- 4.1. Derivation of the General Force Equation.- 4.2. Force on a Conductive Sphere in a Conductive Fluid.- 5. Polarization, the Electrical Distortion in Matter.- 5.1. Molecular Modes.- 5.2. Supramolecular Modes (Interfacial and Interregional Polarization).- 6. Orientational Dielectrophoresis.- 7. Induced Cellular DEP.- 7.1. Experimental Considerations.- 7.2. Batch Methods.- 7.3. Continuous Methods.- 7.4. Single-Cell Levitation.- 7.5. Micro-DEP.- 8. The Use of DEP to Shape Tissue Models.- 9. Applications of Orientational Dielectrophoresis.- 10. Natural rf Oscillations in Dividing Cells.- 10.1. Introduction.- 10.2. Micro-DEP (µ-DEP) by Living Cells.- 11. Cellular Spin Resonance (CSR).- 12. Origins of the Natural rf Oscillations of Dividing Cells.- 13. DEP-Guided Pulse Fusion of Cells.- Acknowledgments.- References.- 13. Electrical Phenomena in Proteinoid Cells.- 1. Introduction.- 1.1. Proteinoid.- 1.2. Temperature.- 1.3. Prosthetic Groups.- 1.4. Hydrolyzability.- 1.5. Solubility.- 1.6. Ionic Behavior.- 1.7. History of Proteinoid Microspheres.- 1.8. History of Electrical Excitation in Evolved Cells.- 2. Physical Properties of Microspheres.- 2.1. Stability.- 3. Membrane.- 3.1. Bilayer Proteinoid Membranes.- 3.2. Spherical Proteinoid Membranes.- 3.3. Tubular Proteinoid Membranes.- 4. The Effect of Light.- 4.1. Spectral Characteristics of the Proteinoid.- 4.2. The Effect of Light Intensity on Electrical Properties.- 5. Electrical Phenomena.- 5.1. Electrical Resistance.- 5.2. Current—Voltage Dependence.- 5.3. Membrane Potential.- 5.4. Electrical Discharges and Oscillations.- 5.5. Channels.- 6. Some Electronic Properties.- 7. Potential Applications.- 8. Conclusions and Prospects.- Acknowledgments.- References.- 14. Noise in Biomolecular Systems.- 1. Introduction.- 2. Principle of Noise Spectrography.- 2.1. Basic Vocabulary.- 2.2. Noise Spectrograph Apparatus.- 3. Noise in Electrolytes and Interfaces.- 3.1. Dilute Aqueous 1.1 Electrolytes.- 3.2. Noise at Electrode—Electrolyte Interface (Case of 1.1 Concentrated Electrolyte).- 3.3. Noise of the Synthetic Membrane—Electrolyte Interface.- 4. Application to Some Biomolecular Systems.- 4.1. Ionic Atmosphere around DNA and Direct Visualization of the Thermal Transconformation (Helix ? Coil Transition).- 4.2. Demonstration of the Permanent Dipole Fluctuations of Collagen Molecules.- 5. Conclusion.- Acknowledgment.- References.- 15. Cellular Spin Resonance (CSR).- 1. Introduction.- 2. Cellular Spinning.- 2.1. In a Static Field.- 2.2. In a Simple Oscillatory Field.- 2.3. In a Rotating Field.- 3. Particle Spinning.- 4. Theory.- 5. Conclusions.- Acknowledgments.- References.- 16. Dielectrophoretic Cell Sorting.- 1. Introduction.- 2. Theory.- 3. Sorter Design.- 4. Results.- 5. Conclusion.- References.- 17. A Qualitative, Molecular Model of the Nerve Impulse. Conductive Properties of Unsaturated Lyotropic Liquid Crystals.- 1. Introduction.- 2. Ordering in the Nerve Membrane.- 3. Electronic Conduction in Liquid Crystalline Membranes. Role of Unsaturated Lipids.- 4. Crystalline ? Liquid Crystalline Phase Transition of Phospholipid Membranes.- 5. Salt-Induced Conformational Changes in Phosphatidylserine.- 6. Charge-Transfer Complex of Phospholipid and Cholesterol.- 7. A Qualitative, Molecular Model of the Nerve Impulse.- Acknowledgments.- References.- 18. Conformation and Electronic Aspects of Chlorpromazine in Solution.- 1. Introduction.- 1.1. On the Structure of Chlorpromazine.- 1.2. Electronic Aspects of Chlorpromazine.- 2. Experimental.- 2.1. Materials.- 2.2. 1H NMR Measurements.- 2.3. 13C NMR Measurements.- 2.4. Electron Microscopy.- 3. Results and Discussion.- 3.1. Assignments of 1H Spectra.- 3.2. Solvent Effects.- 3.3. Irradiation.- 3.4. Conformation in CPZ · HCl Micelles.- 3.5. Electronic Disposition. Interactions of CPZ · HCl with an Electron Acceptor.- References.- 19. Electrochemistry of Drug Interactions and Incompatibilities.- 1. Scope and Limitations.- 1.1. Significance of Drug Interactions.- 1.2. Limitations of In Vitro Investigation.- 1.3. Advantages of the In Vitro Investigation of Drug Interactions and Incompatibilities.- 1.4. Interactions Investigated by Electrochemical Techniques.- 2. Methodologies.- 2.1. Introduction.- 2.2. Conductivity Titration.- 2.3. Voltammetry.- 2.4. Potentiometry.- 2.5. Other Physical Techniques.- 2.6. Biological and Clinical Techniques.- 3. Incompatibility between Anionic and Cationic Antibacterial Agents and Other Anionic and Cationic Drugs.- 4. Interactions of Chlorpromazine.- 4.1. The Significance of Chlorpromazine.- 4.2. Other Phenothiazine Drugs.- 4.3. Chlorpromazine—Iodine.- 4.4. Interactions between Chlorpromazine and Neural Transmitters.- 4.5. Chlorpromazine—Melanin Interactions.- 4.6. Chlorpromazine—Heparin Interaction.- 4.7. Chlorpromazine—Phenytoin Interaction.- 5. Interaction between Beta-Lactam Antibiotics and Aminoglycoside Antibiotics.- 5.1. Beta-Lactam Antibiotics.- 5.2. Aminoglycoside Antibiotics.- 5.3. Clinical Use of Combinations of Beta-Lactam and Aminoglycoside Antibiotics.- 5.4. Problems with Combinations of Beta-Lactam and Aminoglycoside Antibiotics.- 5.5. Electrochemical Investigation of the Beta-Lactam—Aminoglycoside Antibiotic Interaction.- 6. Interactions between Heparin and Antibiotics.- 6.1. Heparin.- 6.2. Heparin—Cation Interactions.- 6.3. Heparin—Antibiotic Interactions.- 7. Heparin—Lidocaine Noninteraction.- 8. Metachromasia.- 8.1. Definition.- 8.2. Applications of Metachromasia.- 8.3. Mechanism of Metachromasia.- 8.4. Electrochemical Investigations of Metachromasia.- References.- 20. Muscular Contraction.- 1. Introduction.- 2. The Mechanism of Muscular Contraction.- 2.1. The Cross-Bridge Model.- 2.2. The Search for a Biodynamic Principle.- 2.3. The Proto-Osmotic Mechanism of Muscular Contraction.- 3. The H+/K+ Circuit in Sarcomere.- 3.1. H+ /K+ Counterflux at Filaments.- 3.2. The Proton Circuit.- 4. Fenn Effect and Hill’s Equation.- 4.1. Energy Output of Muscles.- 4.2. Force—Velocity Relation.- 4.3. Isometric Tension.- 5. Discussion.- References.- 21. Transport in Plants.- 1. Introduction.- 2. Transport Phenomena in Plants.- 2.1. The Transport Network.- 2.2. Ascent of Sap.- 2.3. Transport of Photosynthates.- 2.4. Coupling of the Long-Distance Transport to Cellular Metabolism.- 3. Proto-Osmosis in Organismal Capillaries.- 3.1. Construction of an Organismal Capillary.- 3.2. The H+/K+ Counterflux.- 3.3. Proto-Osmosis.- 3.4. K+ Antiport by Proto-Osmosis.- 3.5. A Basic Unit of Plant Transport.- 4. Turgor Regulation.- 4.1. Stomatal Guard Cells.- 4.2. Leaf Mesophyll and Sink Tissues.- 5. Long-Distance Transport in Plants.- 5.1. Organismal Capillaries in the Plant Transport Systems.- 5.2. Transport in Xylem.- 5.3. Transport in Phloem.- 6. Discussion.- References.- 22. Electrochemical Methods for the Prevention of Microbial Fouling.- 1. Introduction.- 2. Approaches to Biofouling Prevention.- 2.1. Chemical and Mechanical Methods.- 2.2. Electrochemical Methods.- References.- Author Index.