,

Unsupervised Process Monitoring and Fault Diagnosis with Machine Learning Methods

Gebonden Engels 2013 2013e druk 9781447151845
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

This unique text/reference describes in detail the latest advances in unsupervised process monitoring and fault diagnosis with machine learning methods. Abundant case studies throughout the text demonstrate the efficacy of each method in real-world settings. The broad coverage examines such cutting-edge topics as the use of information theory to enhance unsupervised learning in tree-based methods, the extension of kernel methods to multiple kernel learning for feature extraction from data, and the incremental training of multilayer perceptrons to construct deep architectures for enhanced data projections. Topics and features: discusses machine learning frameworks based on artificial neural networks, statistical learning theory and kernel-based methods, and tree-based methods; examines the application of machine learning to steady state and dynamic operations, with a focus on unsupervised learning; describes the use of spectral methods in process fault diagnosis.

Specificaties

ISBN13:9781447151845
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:374
Uitgever:Springer London
Druk:2013

Lezersrecensies

Wees de eerste die een lezersrecensie schrijft!

Inhoudsopgave

<p>Introduction</p><p>Overview of Process Fault Diagnosis</p><p>Artificial Neural Networks</p><p>Statistical Learning Theory and Kernel-Based Methods</p><p>Tree-Based Methods</p><p>Fault Diagnosis in Steady State Process Systems</p><p>Dynamic Process Monitoring</p><p>Process Monitoring Using Multiscale Methods</p>

Managementboek Top 100

Rubrieken

    Personen

      Trefwoorden

        Unsupervised Process Monitoring and Fault Diagnosis with Machine Learning Methods