,

Decision Forests for Computer Vision and Medical Image Analysis

Gebonden Engels 2013 2013e druk 9781447149286
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

This practical and easy-to-follow text explores the theoretical underpinnings of decision forests, organizing the vast existing literature on the field within a new, general-purpose forest model. Topics and features: with a foreword by Prof. Y. Amit and Prof. D. Geman, recounting their participation in the development of decision forests; introduces a flexible decision forest model, capable of addressing a large and diverse set of image and video analysis tasks; investigates both the theoretical foundations and the practical implementation of decision forests; discusses the use of decision forests for such tasks as classification, regression, density estimation, manifold learning, active learning and semi-supervised classification; includes exercises and experiments throughout the text, with solutions, slides, demo videos and other supplementary material provided at an associated website; provides a free, user-friendly software library, enabling the reader to experiment with forests in a hands-on manner.

Specificaties

ISBN13:9781447149286
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:368
Uitgever:Springer London
Druk:2013

Lezersrecensies

Wees de eerste die een lezersrecensie schrijft!

Inhoudsopgave

<p>Overview and Scope</p><p>Notation and Terminology</p><p>Part I: The Decision Forest Model</p><p>Introduction: The Abstract Forest Model</p><p>Classification Forests</p><p>Regression Forests</p><p>Density Forests</p><p>Manifold Forests</p><p>Semi-Supervised Classification Forests</p><p>Part II: Applications in Computer Vision and Medical Image Analysis</p><p>Keypoint Recognition Using Random Forests and Random Ferns<br>V. Lepetit and P. Fua</p><p>Extremely Randomized Trees and Random Subwindows for Image Classification, Annotation, and Retrieval<br>R. Marée, L. Wehenkel and P. Geurts</p><p>Class-Specific Hough Forests for Object Detection<br>J. Gall and V. Lempitsky</p><p>Hough-Based Tracking of Deformable Objects<br>M. Godec, P. M. Roth and H. Bischof</p><p>Efficient Human Pose Estimation from Single Depth Images<br>J. Shotton, R. Girshick, A. Fitzgibbon, T. Sharp, M. Cook, M. Finocchio, R. Moore, P. Kohli, A. Criminisi, A. Kipman and A. Blake</p><p>Anatomy Detection and Localization in 3D Medical Images<br>A. Criminisi, D. Robertson, O. Pauly, B. Glocker, E. Konukoglu, J. Shotton, D. Mateus, A. Martinez Möller, S. G. Nekolla and N. Navab</p><p>Semantic Texton Forests for Image Categorization and Segmentation<br>M. Johnson, J. Shotton and R. Cipolla</p><p>Semi-Supervised Video Segmentation Using Decision Forests<br>V. Badrinarayanan, I. Budvytis and R. Cipolla</p><p>Classification Forests for Semantic Segmentation of Brain Lesions in Multi-Channel MRI<br>E. Geremia, D. Zikic, O. Clatz, B. H. Menze, B. Glocker, E. Konukoglu, J. Shotton, O. M. Thomas, S. J. Price, T. Das, R. Jena, N. Ayache and A. Criminisi</p><p>Manifold Forests for Multi-Modality Classification of Alzheimer’s Disease<br>K. R. Gray, P. Aljabar, R. A. Heckemann, A. Hammers and D. Rueckert</p><p>Entangled Forests and Differentiable Information Gain Maximization<br>A. Montillo, J. Tu, J. Shotton, J. Winn, J. E. Iglesias, D. N. Metaxas, and A. Criminisi</p><p>Decision Tree Fields: An Efficient Non-Parametric Random Field Model for Image Labeling<br>S. Nowozin, C. Rother, S. Bagon, T. Sharp, B. Yao and P. Kohli</p><p>Part III: Implementation and Conclusion</p><p>Efficient Implementation of Decision Forests<br>J. Shotton, D. Robertson and T. Sharp</p><p>The Sherwood Software Library<br>D. Robertson, J. Shotton and T. Sharp</p><p>Conclusions</p>

Managementboek Top 100

Rubrieken

    Personen

      Trefwoorden

        Decision Forests for Computer Vision and Medical Image Analysis