,

Polymer Morphology – Principles, Characterization, and Processing

Principles, Characterization, and Processing

Gebonden Engels 2016 9781118452158
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

With a focus on structure–property relationships, this book describes how polymer morphology affects properties and how scientists can modify them. The book covers structure development, theory, simulation, and processing; and discusses a broad range of techniques and methods.

 Provides an up–to–date, comprehensive introduction to the principles and practices of polymer morphology
 Illustrates major structure types, such as semicrystalline morphology, surface–induced polymer crystallization, phase separation, self–assembly, deformation, and surface topography
 Covers a variety of polymers, such as homopolymers, block copolymers, polymer thin films, polymer blends, and polymer nanocomposites
 Discusses a broad range of advanced and novel techniques and methods, like x–ray diffraction, thermal analysis, and electron microscopy and their applications in the morphology of polymer materials

Specificaties

ISBN13:9781118452158
Taal:Engels
Bindwijze:gebonden
Aantal pagina's:464

Lezersrecensies

Wees de eerste die een lezersrecensie schrijft!

Inhoudsopgave

<p>PREFACE xiii</p>
<p>LIST OF CONTRIBUTORS xv</p>
<p>PART I PRINCIPLES AND METHODS OF CHARACTERIZATION 1</p>
<p>1 Overview and Prospects of Polymer Morphology 3<br /> Jerold M. Schultz</p>
<p>1.1 Introductory Remarks 3</p>
<p>1.2 Experimental Avenues of Morphological Research 4</p>
<p>1.2.1 Morphological Characterization: The Enabling of in situ Measurements 4</p>
<p>1.2.2 Morphology Property Investigation 5</p>
<p>1.2.3 Morphology Development 7</p>
<p>1.3 Modeling and Simulation 8</p>
<p>1.3.1 Self–Generated Fields 9</p>
<p>1.4 Wishful Thinking 11</p>
<p>1.5 Summary 11</p>
<p>References 12</p>
<p>2 X–ray Diffraction from Polymers 14<br /> N. Sanjeeva Murthy</p>
<p>2.1 Introduction 14</p>
<p>2.2 Basic Principles 14</p>
<p>2.3 Instrumentation 16</p>
<p>2.4 Structure Determination 17</p>
<p>2.4.1 Lattice Dimensions 17</p>
<p>2.4.2 Molecular Modeling 18</p>
<p>2.4.3 Rietveld Method 18</p>
<p>2.4.4 Pair Distribution Functions 18</p>
<p>2.5 Phase Analysis 19</p>
<p>2.5.1 Crystallinity Determination 20</p>
<p>2.5.2 Composition Analysis 21</p>
<p>2.6 Crystallite Size and Disorder 21</p>
<p>2.7 Orientation Analysis 22</p>
<p>2.7.1 Crystalline Orientation 22</p>
<p>2.7.2 Uniaxial Orientation 22</p>
<p>2.7.3 Biaxial Orientation 24</p>
<p>2.7.4 Amorphous Orientation 25</p>
<p>2.8 Small–Angle Scattering 25</p>
<p>2.8.1 Central Diffuse Scattering 26</p>
<p>2.8.2 Discrete Reflections from Lamellar Structures 27</p>
<p>2.8.3 Small–Angle Neutron Scattering and Solvent Diffusion 29</p>
<p>2.9 Specialized Measurements 30</p>
<p>2.9.1 In situ Experiments 30</p>
<p>2.9.2 Microbeam Diffraction 31</p>
<p>2.9.3 Grazing Incidence Diffraction 32</p>
<p>2.10 Summary 33</p>
<p>References 33</p>
<p>3 Electron Microscopy of Polymers 37<br /> Goerg H. Michler and Werner Lebek</p>
<p>3.1 Introduction 37</p>
<p>3.2 Microscopic Techniques 37</p>
<p>3.2.1 Scanning Electron Microscopy (SEM) 37</p>
<p>3.2.2 Transmission Electron Microscopy (TEM) 42</p>
<p>3.2.3 Comparison of Different Microscopic Techniques 45</p>
<p>3.2.4 Image Processing and Image Analysis 46</p>
<p>3.3 Sample Preparation 47</p>
<p>3.4 In situ Microscopy 50</p>
<p>References 52</p>
<p>4 Characterization of Polymer Morphology by Scattering Techniques 54<br /> Jean–Michel Guenet</p>
<p>4.1 Introduction 54</p>
<p>4.2 A Short Theoretical Presentation 55</p>
<p>4.2.1 General Expressions 55</p>
<p>4.2.2 The Form Factor 56</p>
<p>4.3 Experimental Aspects 60</p>
<p>4.3.1 The Contrast Factor 60</p>
<p>4.3.2 Experimental Setup 61</p>
<p>4.4 Typical Results 62</p>
<p>4.4.1 Neutrons Experiments: A Contrast Variation Story 62</p>
<p>4.4.2 X–Ray Experiments: A Time–Resolved Story 67</p>
<p>4.5 Concluding Remarks 69</p>
<p>References 69</p>
<p>5 Differential Scanning Calorimetry of Polymers 72<br /> Alejandro J. M&uuml;ller and Rose Mary Michell</p>
<p>5.1 Introduction to Differential Scanning Calorimetry. Basic Principles and Types of DSC Equipment 72</p>
<p>5.2 Detection of First–Order and Second–Order Transitions by DSC. Applications of Standard DSC Experiments to the Determination of the Glass Transition Temperature and the Melting Temperature of Polymeric Materials 74</p>
<p>5.3 Self–Nucleation 75</p>
<p>5.3.1 Quantification of the Nucleation Efficiency 77</p>
<p>5.4 Thermal Fractionation 78</p>
<p>5.5 Multiphasic Materials: Polymer Blends and Block Copolymers. Fractionated Crystallization and Confinement Effects 81</p>
<p>5.5.1 Blends and Fractionated Crystallization 81</p>
<p>5.5.2 Copolymers 85</p>
<p>5.5.3 Copolymers Versus Blends 87</p>
<p>5.5.4 The Crystallization of Polymers and Copolymers within Nanoporous Templates 88</p>
<p>5.6 Self–Nucleation and the Efficiency Scale to Evaluate Nucleation Power 91</p>
<p>5.6.1 Supernucleation 93</p>
<p>5.7 Determination of Overall Isothermal Crystallization by DSC 95</p>
<p>5.8 Conclusions 95</p>
<p>Acknowledgment 95</p>
<p>References 95</p>
<p>6 Imaging Polymer Morphology using Atomic Force Microscopy 100<br /> Holger Sch&ouml;nherr</p>
<p>6.1 Introduction 100</p>
<p>6.2 Fundamental AFM Techniques 101</p>
<p>6.2.1 Contact Mode AFM 101</p>
<p>6.2.2 Intermittent Contact (Tapping) Mode AFM 104</p>
<p>6.2.3 Further Dynamic AFM Modes 105</p>
<p>6.3 Imaging of Polymer Morphology 107</p>
<p>6.3.1 Single Polymer Chains 107</p>
<p>6.3.2 Crystal Structures 107</p>
<p>6.3.3 Lamellar Crystals 109</p>
<p>6.3.4 Spherulites 109</p>
<p>6.3.5 Multiphase Systems 109</p>
<p>6.3.6 Polymeric Nanostructures 111</p>
<p>6.4 Property Mapping 113</p>
<p>6.4.1 Nanomechanical Properties 113</p>
<p>6.4.2 Scanning Thermal Microscopy 115</p>
<p>References 115</p>
<p>7 FTIR Imaging of Polymeric Materials 118<br /> S. G. Kazarian and K. L. A. Chan</p>
<p>7.1 Introduction 118</p>
<p>7.2 Principles of FTIR Imaging 118</p>
<p>7.3 Sampling Methods 120</p>
<p>7.3.1 Transmission Mode 120</p>
<p>7.3.2 Attenuated Total Reflection (ATR) Mode 121</p>
<p>7.4 Spatial Resolution 122</p>
<p>7.4.1 Transmission FTIR Imaging 123</p>
<p>7.4.2 ATR FTIR Spectroscopic Imaging 123</p>
<p>7.5 Recent Applications 124</p>
<p>7.5.1 Polymer Blends 124</p>
<p>7.5.2 Polymer Processes 125</p>
<p>7.5.3 Polarized FTIR Imaging for Orientation Studies 126</p>
<p>7.6 Conclusions 127</p>
<p>References 128</p>
<p>8 NMR Analysis of Morphology and Structure of Polymers 131<br /> Takeshi Yamanobe and Hiroki Uehara</p>
<p>8.1 Introduction 131</p>
<p>8.2 Basic Concepts in NMR 131</p>
<p>8.2.1 Principles of NMR 131</p>
<p>8.2.2 Analysis of the Free Induction Decay (FID) 132</p>
<p>8.3 Morphology and Relaxation Behavior of Polyethylene 134</p>
<p>8.3.1 Morphology and Molecular Mobility 134</p>
<p>8.3.2 Lamellar Thickening by Annealing 134</p>
<p>8.3.3 Entanglement in the Amorphous Phase 136</p>
<p>8.4 Morphology and Structure of the Nascent Powders 137</p>
<p>8.4.1 Etching by Fuming Nitric Acid 137</p>
<p>8.4.2 Structural Change by Annealing 138</p>
<p>8.4.3 Nascent Isotactic Polypropylene Powder 139</p>
<p>8.5 Kinetics of Dynamic Process of Polymers 141</p>
<p>8.5.1 Melt Drawing of Polyethylene 141</p>
<p>8.5.2 Crystallization Mechanism of Nylon 46 143</p>
<p>8.5.3 Degree of Curing of Novolac Resins 145</p>
<p>8.6 Conclusions 146</p>
<p>References 146</p>
<p>PART II MORPHOLOGY PROPERTIES AND PROCESSING 151</p>
<p>9 Small–Angle X–ray Scattering for Morphological Analysis of Semicrystalline Polymers 153<br /> Anne Seidlitz and Thomas Thurn–Albrecht</p>
<p>9.1 Introduction 153</p>
<p>9.2 Small–angle X–ray Scattering 153</p>
<p>9.2.1 Typical Experimental Setup 153</p>
<p>9.2.2 Basic Formalism Describing the Relation between Real–Space Structure and Scattering Intensity in a SAXS Experiment 154</p>
<p>9.2.3 Methods of Analysis Used for SAXS on Semicrystalline Polymers 155</p>
<p>9.3 Concluding Remarks 162</p>
<p>Appendix: Calculation of the Model Function K&THORN; sim(s) 163</p>
<p>References 163</p>
<p>10 Crystalline Morphology of Homopolymers and Block Copolymers 165<br /> Shuichi Nojima and Hironori Marubayashi</p>
<p>10.1 Introduction 165</p>
<p>10.2 Crystalline Morphology of Homopolymers 165</p>
<p>10.2.1 Crystal Structure 165</p>
<p>10.2.2 Lamellar Morphology 167</p>
<p>10.2.3 Spherulite Structure 168</p>
<p>10.2.4 Crystalline Morphology of Homopolymers Confined in Isolated Nanodomains 168</p>
<p>10.2.5 Crystalline Morphology of Polymer Blends 169</p>
<p>10.3 Crystalline Morphology of Block Copolymers 171</p>
<p>10.3.1 Crystalline Morphology of Weakly Segregated Block Copolymers 172</p>
<p>10.3.2 Crystalline Morphology of Block Copolymers with Glassy Amorphous Blocks 173</p>
<p>10.3.3 Crystalline Morphology of Strongly Segregated Block Copolymers 174</p>
<p>10.3.4 Crystalline Morphology of Double Crystalline Block Copolymers 175</p>
<p>10.4 Concluding Remarks 176</p>
<p>References 176</p>
<p>11 Isothermal Crystallization Kinetics of Polymers 181<br /> Alejandro J. M&uuml;ller Rose Mary Michell and Arnaldo T. Lorenzo</p>
<p>11.1 Introduction 181</p>
<p>11.2 Crystallization Process 182</p>
<p>11.3 Crystallization Kinetics 182</p>
<p>11.3.1 The Avrami Equation [31] 183</p>
<p>11.3.2 Nucleation and Crystal Growth: Lauritzen Hofmann Theory 188</p>
<p>11.4 Isothermal Crystallization Kinetics Morphology Relationship 191</p>
<p>11.4.1 Linear PS–b–PCL versus Miktoarm (PS2)–b–(PCL2) Block Copolymers 191</p>
<p>11.4.2 Crystallization Kinetics and Morphology of PLLA–b–PCL Diblock Copolymers 194</p>
<p>11.4.3 Nucleation and Crystallization Kinetics of Double Crystalline Polyethylene/Polyamide (PE/PA) Blends 196</p>
<p>11.4.4 Crystallization Kinetics of Poly( –Caprolactone)/Carbon Nanotubes (PCL/CNTs) Blends 200</p>
<p>11.5 Conclusions 201</p>
<p>Acknowledgments 201</p>
<p>References 201</p>
<p>12 Surface–induced Polymer Crystallization 204<br /> Xiaoli Sun and Shouke Yan</p>
<p>12.1 Introduction 204</p>
<p>12.2 Influence of Foreign Surface on the Crystallization Kinetics of Polymers 205</p>
<p>12.3 Influence of Foreign Surface on the Crystal Structure and Morphology of Polymers 205</p>
<p>12.3.1 Crystallization of Thin Polymer Films on Amorphous Foreign Surface 205</p>
<p>12.3.2 Crystallization of Polymer Thin Films on Crystalline Foreign Surface with Special Crystallographic Interaction 209</p>
<p>12.4 Bulk Crystallization of Polymers in Contact with a Foreign Surface 226</p>
<p>12.5 Summary 234</p>
<p>References 235</p>
<p>13 Thermodynamics and Kinetics of Polymer Crystallization 242<br /> Wenbing Hu and Liyun Zha</p>
<p>13.1 Introduction 242</p>
<p>13.2 Thermodynamics of Polymer Crystallization 242</p>
<p>13.3 Crystal Nucleation 247</p>
<p>13.4 Crystal Growth 251</p>
<p>13.5 Crystal Annealing 254</p>
<p>13.6 Summary 255</p>
<p>References 256</p>
<p>14 Self–Assembly and Morphology in Block Copolymer Systems with Specific Interactions 259<br /> Anbazhagan Palanisamy and Qipeng Guo</p>
<p>14.1 Introduction 259</p>
<p>14.2 Block Copolymer Systems with Hydrogen Bonding Interaction in Solid State 260</p>
<p>14.2.1 Diblock Copolymer/Homopolymer Systems 260</p>
<p>14.2.2 Diblock/Triblock Copolymer Systems 264</p>
<p>14.3 Block Copolymer Systems with Hydrogen–Bonding Interaction in Solution 268</p>
<p>14.3.1 Single–Component Block Copolymer Systems 268</p>
<p>14.3.2 Diblock Copolymer/Homopolymer Systems 269</p>
<p>14.3.3 Diblock/Diblock Copolymer Systems 271</p>
<p>14.3.4 Triblock Copolymer Systems 275</p>
<p>14.4 Block Copolymer Systems with Ionic Interaction 275</p>
<p>14.4.1 Diblock Copolymer/Homopolymer Systems 275</p>
<p>14.4.2 Diblock/Triblock Copolymer Systems 276</p>
<p>14.5 Block Copolymer Blends via Metal Ligand Coordination Bonds 278</p>
<p>14.6 Concluding Remarks 278</p>
<p>References 279</p>
<p>15 Dynamics Simulations of Microphase Separation in Block Copolymers 283<br /> Xuehao He Xuejin Li Peng Chen and Haojun Liang</p>
<p>15.1 Introduction 283</p>
<p>15.2 Polymer Model and Simulation Algorithm 284</p>
<p>15.2.1 Monte Carlo Method 284</p>
<p>15.2.2 Dissipative Particle Dynamics Method 285</p>
<p>15.2.3 Polymeric Self–Consistent Field Theory 286</p>
<p>15.3 Dynamics of Self–Assembly of Block Copolymers 287</p>
<p>15.3.1 Phase Separation of Linear Block Copolymers 287</p>
<p>15.3.2 Self–Assembly of Star Block Copolymers in Melt 287</p>
<p>15.3.3 Self–Assembly of Block Copolymers in Constrained Systems 289</p>
<p>15.3.4 Micellization of Amphiphilic Block Copolymer in Solution 292</p>
<p>15.4 Outlook 294</p>
<p>References 295</p>
<p>16 Morphology Control of Polymer thin Films 299<br /> Jiangang Liu Xinhong Yu Longjian Xue and Yanchun Han</p>
<p>16.1 Wetting 299</p>
<p>16.1.1 Dewetting Mechanisms 300</p>
<p>16.1.2 Dewetting Dynamics 301</p>
<p>16.1.3 Rim Instability 303</p>
<p>16.1.4 Factors Affecting the Stability of Polymer Thin Films 303</p>
<p>16.2 Thin Film of Polymer Blend 304</p>
<p>16.2.1 Fundamentals of Polymer Blends 305</p>
<p>16.2.2 Phase Separation in Thin Polymer Films 306</p>
<p>16.3 The Introduction of Polymer Blend Film in Solar Cells 307</p>
<p>16.3.1 Establish Interpenetrating Network Structure by Controlling Phase Separation 308</p>
<p>16.3.2 Control the Domain Size and Purify of the Domains 310</p>
<p>16.3.3 Adjust the Diffused Structure at the Interface Between Donor and Acceptor 312</p>
<p>16.3.4 Construct the Relationship Between Film Morphology and Device Performance 312</p>
<p>16.4 Summary and Outlook 313</p>
<p>References 313</p>
<p>17 Polymer Surface Topography and Nanomechanical Mapping 317<br /> Hao Liu So Fujinami Dong Wang Ken Nakajima and Toshio Nishi</p>
<p>17.1 Introduction 317</p>
<p>17.2 Contact Mechanics 317</p>
<p>17.2.1 Hertzian Theory (Repulsion between Elastic Bodies) 318</p>
<p>17.2.2 Bradley Model (Interaction between Rigid Bodies) 318</p>
<p>17.2.3 Johnson Kendall Roberts (JKR) Model 318</p>
<p>17.2.4 Derjaguin Muller Toporov (DMT) Model 319</p>
<p>17.2.5 The JKR DMT transition and Maugis Dugdale (MD) Model 319</p>
<p>17.2.6 Adhesion Map 320</p>
<p>17.3 Application of Contact Mechanics to Experimental Data 321</p>
<p>17.3.1 Consideration of Contact Models 321</p>
<p>17.3.2 Force Distance Curve Conversion 321</p>
<p>17.3.3 Analysis of Load Indentation Curves 322</p>
<p>17.3.4 Nanomechanical Mapping 322</p>
<p>17.4 Application Examples 323</p>
<p>17.4.1 Effect of Processing Conditions on Morphology and Mechanical Properties of Block Copolymers 323</p>
<p>17.4.2 Measuring the Deformation of Both Ductile and Fragile Polymers 325</p>
<p>17.4.3 Nanorheological AFM on Rubbers 328</p>
<p>17.5 Conclusion 331</p>
<p>References 331</p>
<p>18 Polymer Morphology and Deformation Behavior 335<br /> Masanori Hara</p>
<p>18.1 Introduction 335</p>
<p>18.2 Deformation Behavior of Amorphous Polymers 336</p>
<p>18.2.1 Deformation Behavior of Thin Films 336</p>
<p>18.2.2 Deformation Behavior of Bulk Polymers 338</p>
<p>18.3 Deformation Behavior of Semicrystalline Polymers 339</p>
<p>18.3.1 Deformation of Unoriented Semicrystalline Polymers 341</p>
<p>18.3.2 Strain Hardening and Network Density 341</p>
<p>18.4 Deformation Behavior of Block Copolymers 342</p>
<p>18.4.1 Block Copolymers Based on S and B 343</p>
<p>18.4.2 Block Copolymers Based on E and C (CHE) 345</p>
<p>18.5 Conclusions and Outlook 345</p>
<p>References 346</p>
<p>19 Morphology Development in Immiscible Polymer Blends 348<br /> Ruth Cardinaels and Paula Moldenaers</p>
<p>19.1 Introduction 348</p>
<p>19.2 Morphology Development in Bulk Flow 350</p>
<p>19.2.1 Droplet Matrix Structures 350</p>
<p>19.2.2 Fibrillar Structures 359</p>
<p>19.2.3 Cocontinuous Structures 361</p>
<p>19.3 Recent Advances in Polymer Blends 363</p>
<p>19.3.1 Immiscible Blends in Confined Flow 363</p>
<p>19.3.2 Blend Compatibilization by Nanoparticles 364</p>
<p>19.4 Conclusions 367</p>
<p>Acknowledgments 368</p>
<p>References 368</p>
<p>20 Processing Structure and Morphology in Polymer Nanocomposites 374<br /> Duraccio Donatella Clara Silvestre Sossio Cimmino Antonella Marra and Marilena Pezzuto</p>
<p>20.1 Overview 374</p>
<p>20.2 Nanoparticles with One Dimension Less Than 100 nm (Layered Silicates) 375</p>
<p>20.3 Nanoparticles with Two Dimensions Less Than 100 nm (Carbon Nanotubes) 377</p>
<p>20.4 Nanoparticles with Three Dimensions Less Than 100 nm (Metal Metal Oxide) 380</p>
<p>20.5 Preparative Methods 382</p>
<p>20.5.1 Solution Processing 382</p>
<p>20.5.2 In situ Polymerization 383</p>
<p>20.5.3 Melt Processing 384</p>
<p>20.5.4 In situ Sol Gel Technology 384</p>
<p>20.6 Structure and Morphology of Polymer Nanocomposites 385</p>
<p>20.7 Concluding Remarks 388</p>
<p>References 388</p>
<p>21 Morphology and Gas Barrier Properties of Polymer Nanocomposites 397<br /> Abbas Ghanbari Marie–Claude Heuzey Pierre J. Carreau and Minh–Tan Ton–That</p>
<p>21.1 Introduction 397</p>
<p>21.2 Structure of Layered Silicates 397</p>
<p>21.3 Morphologies of Polymer–Layered Silicate Composites 398</p>
<p>21.4 Nanocomposite Preparation Methods 398</p>
<p>21.5 Challenges of Thermal Degradation in Melt Intercalation 400</p>
<p>21.6 Methods for Improving Gas Barrier Properties of Polymers 403</p>
<p>21.7 Polyamide Nanocomposites 405</p>
<p>21.8 Polyolefin Nanocomposites 405</p>
<p>21.9 Pet Nanocomposites 406</p>
<p>21.10 Polylactide Nanocomposites 413</p>
<p>21.11 Conclusions and Perspectives 414</p>
<p>References 415</p>
<p>22 Features on the Development and Stability of Phase Morphology in Complex Multicomponent Polymeric Systems: Main Focus on Processing Aspects 418<br /> Charef Harrats Maria–Beatrice Coltelli and Gabriel Groeninckx</p>
<p>22.1 Introduction 418</p>
<p>22.2 Phase Morphology Development in Polymer Blends 419</p>
<p>22.2.1 Droplet–in–Matrix (Dispersed) Phase Morphology 419</p>
<p>22.2.2 Co–continuous Phase Morphology 419</p>
<p>22.2.3 Phase Morphology in Ternary Blends 420</p>
<p>22.3 Melt Processing of Polymer Blends 423</p>
<p>22.3.1 Morphology Buildup during Processing 423</p>
<p>22.3.2 Effects of Processing Parameters on Phase Morphology 424</p>
<p>22.4 Chemistry Involved in Polymer Blends 426</p>
<p>22.4.1 Effect of the Compatibilizer on Phase Morphology 426</p>
<p>22.4.2 Formation in situ of the Compatibilizer 427</p>
<p>22.4.3 Case of Reactive Ternary Blends 429</p>
<p>22.4.4 Stability of Phase Morphology in Reactively Compatibilized Blends 431</p>
<p>22.4.5 Organoclay–Promoted Phase Morphology 433</p>
<p>22.4.6 Conclusions 435</p>
<p>References 436</p>
<p>INDEX 439</p>

Managementboek Top 100

Rubrieken

    Personen

      Trefwoorden

        Polymer Morphology – Principles, Characterization, and Processing