, ,

Python for Programmers

Paperback Engels 2018 9780135224335
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

Written for programmers with a background in another high-level language, Python for Programmers uses hands-on instruction to teach today’s most compelling, leading-edge computing technologies and programming in Python—one of the world’s most popular and fastest-growing languages.

In the context of 500+, real-world examples ranging from individual snippets to 40 large scripts and full implementation case studies, you’ll use the interactive IPython interpreter with code in Jupyter Notebooks to quickly master the latest Python coding idioms. After covering Python Chapters 1-5 and a few key parts of Chapters 6-7, you’ll be able to handle significant portions of the hands-on introductory AI case studies in Chapters 11-16, which are loaded with cool, powerful, contemporary examples. These include natural language processing, data mining Twitter® for sentiment analysis, cognitive computing with IBM® Watson™, supervised machine learning with classification and regression, unsupervised machine learning with clustering, computer vision through deep learning and convolutional neural networks, deep learning with recurrent neural networks, big data with Hadoop®, Spark™ and NoSQL databases, the Internet of Things and more. You’ll also work directly or indirectly with cloud-based services, including Twitter, Google Translate™, IBM Watson, Microsoft® Azure®, OpenMapQuest, PubNub and more.

500+ hands-on, real-world, live-code examples from snippets to case studies IPython + code in Jupyter® Notebooks Library-focused: Uses Python Standard Library and data science libraries to accomplish significant tasks with minimal code Rich Python coverage: Control statements, functions, strings, files, JSON serialisation, CSV, exceptions Procedural, functional-style and object-oriented programming Collections: Lists, tuples, dictionaries, sets, NumPy arrays, pandas Series & DataFrames Static, dynamic and interactive visualisations Data experiences with real-world datasets and data sources Intro to Data Science sections: AI, basic stats, simulation, animation, random variables, data wrangling, regression AI, big data and cloud data science case studies: NLP, data mining Twitter®, IBM® Watson™, machine learning, deep learning, computer vision, Hadoop®, Spark™, NoSQL, IoT Open-source libraries: NumPy, pandas, Matplotlib, Seaborn, Folium, SciPy, NLTK, TextBlob, spaCy, Textatistic, Tweepy, scikit-learn®, Keras and more

Specificaties

ISBN13:9780135224335
Taal:Engels
Bindwijze:Paperback

Lezersrecensies

Wees de eerste die een lezersrecensie schrijft!

Inhoudsopgave

<p>Preface xvii<br>Before You Begin xxxiii<br><strong>Chapter 1: Introduction to Computers and Python 1</strong><br>1.1 Introduction 2<br>1.2 A Quick Review of Object Technology Basics 3<br>1.3 Python 5<br>1.4 It’s the Libraries! 7<br>1.5 Test-Drives: Using IPython and Jupyter Notebooks 9<br>1.6 The Cloud and the Internet of Things 16<br>1.7 How Big Is Big Data? 17<br>1.8 Case Study—A Big-Data Mobile Application 24<br>1.9 Intro to Data Science: Artificial Intelligence—at the Intersection of CS and Data Science 26<br>1.10 Wrap-Up 29<br><strong>Chapter 2: Introduction to Python Programming 31</strong><br>2.1 Introduction 32<br>2.2 Variables and Assignment Statements 32<br>2.3 Arithmetic 33<br>2.4 Function print and an Intro to Single- and Double-Quoted Strings 36<br>2.5 Triple-Quoted Strings 38<br>2.6 Getting Input from the User 39<br>2.7 Decision Making: The if Statement and Comparison Operators 41<br>2.8 Objects and Dynamic Typing 45<br>2.9 Intro to Data Science: Basic Descriptive Statistics 46<br>2.10 Wrap-Up 48<br><strong>Chapter 3: Control Statements 49</strong><br>3.1 Introduction 50<br>3.2 Control Statements 50<br>3.3 if Statement 51<br>3.4 if...else and if...elif...else Statements 52<br>3.5 while Statement 55<br>3.6 for Statement 55<br>3.7 Augmented Assignments 57<br>3.8 Sequence-Controlled Iteration; Formatted Strings 58<br>3.9 Sentinel-Controlled Iteration 59<br>3.10 Built-In Function range: A Deeper Look 60<br>3.11 Using Type Decimal for Monetary Amounts 61<br>3.12 break and continue Statements 64<br>3.13 Boolean Operators and, or and not 65<br>3.14 Intro to Data Science: Measures of Central Tendency—Mean, Median and Mode 67<br>3.15 Wrap-Up 69<br><strong>Chapter 4: Functions 71</strong><br>4.1 Introduction 72<br>4.2 Defining Functions 72<br>4.3 Functions with Multiple Parameters 75<br>4.4 Random-Number Generation 76<br>4.5 Case Study: A Game of Chance 78<br>4.6 Python Standard Library 81<br>4.7 math Module Functions 82<br>4.8 Using IPython Tab Completion for Discovery 83<br>4.9 Default Parameter Values 85<br>4.10 Keyword Arguments 85<br>4.11 Arbitrary Argument Lists 86<br>4.12 Methods: Functions That Belong to Objects 87<br>4.13 Scope Rules 87<br>4.14 import: A Deeper Look 89<br>4.15 Passing Arguments to Functions: A Deeper Look 90<br>4.16 Recursion 93<br>4.17 Functional-Style Programming 95<br>4.18 Intro to Data Science: Measures of Dispersion 97<br>4.19 Wrap-Up 98<br><strong>Chapter 5: Sequences: Lists and Tuples 101</strong><br>5.1 Introduction 102<br>5.2 Lists 102<br>5.3 Tuples 106<br>5.4 Unpacking Sequences 108<br>5.5 Sequence Slicing 110<br>5.6 del Statement 112<br>5.7 Passing Lists to Functions 113<br>5.8 Sorting Lists 115<br>5.9 Searching Sequences 116<br>5.10 Other List Methods 117<br>5.11 Simulating Stacks with Lists 119<br>5.12 List Comprehensions 120<br>5.13 Generator Expressions 121<br>5.14 Filter, Map and Reduce 122<br>5.15 Other Sequence Processing Functions 124<br>5.16 Two-Dimensional Lists 126<br>5.17 Intro to Data Science: Simulation and Static Visualizations 128<br>5.18 Wrap-Up 135<br><strong>Chapter 6: Dictionaries and Sets 137</strong><br>6.1 Introduction 138<br>6.2 Dictionaries 138<br>6.3 Sets 147<br>6.4 Intro to Data Science: Dynamic Visualizations 152<br>6.5 Wrap-Up 158<br><strong>Chapter 7: Array-Oriented Programming with NumPy 159</strong><br>7.1 Introduction 160<br>7.2 Creating arrays from Existing Data 160<br>7.3 array Attributes 161<br>7.4 Filling arrays with Specific Values 163<br>7.5 Creating arrays from Ranges 164<br>7.6 List vs. array Performance: Introducing %timeit 165<br>7.7 array Operators 167<br>7.8 NumPy Calculation Methods 169<br>7.9 Universal Functions 170<br>7.10 Indexing and Slicing 171<br>7.11 Views: Shallow Copies 173<br>7.12 Deep Copies 174<br>7.13 Reshaping and Transposing 175<br>7.14 Intro to Data Science: pandas Series and DataFrames 177<br>7.15 Wrap-Up 189<br><strong>Chapter 8: Strings: A Deeper Look 191</strong><br>8.1 Introduction 192<br>8.2 Formatting Strings 193<br>8.3 Concatenating and Repeating Strings 196<br>8.4 Stripping Whitespace from Strings 197<br>8.5 Changing Character Case 197<br>8.6 Comparison Operators for Strings 198<br>8.7 Searching for Substrings 198<br>8.8 Replacing Substrings 199<br>8.9 Splitting and Joining Strings 200<br>8.10 Characters and Character-Testing Methods 202<br>8.11 Raw Strings 203<br>8.12 Introduction to Regular Expressions 203<br>8.13 Intro to Data Science: Pandas, Regular Expressions and Data Munging 210<br>8.14 Wrap-Up 214<br><strong>Chapter 9: Files and Exceptions 217</strong><br>9.1 Introduction 218<br>9.2 Files 219<br>9.3 Text-File Processing 219<br>9.4 Updating Text Files 222<br>9.5 Serialization with JSON 223<br>9.6 Focus on Security: pickle Serialization and Deserialization 226<br>9.7 Additional Notes Regarding Files 226<br>9.8 Handling Exceptions 227<br>9.9 finally Clause 231<br>9.10 Explicitly Raising an Exception 233<br>9.11 (Optional) Stack Unwinding and Tracebacks 233<br>9.12 Intro to Data Science: Working with CSV Files 235<br>9.13 Wrap-Up 241<br><strong>Chapter 10: Object-Oriented Programming 243</strong><br>10.1 Introduction 244<br>10.2 Custom Class Account 246<br>10.3 Controlling Access to Attributes 249<br>10.4 Properties for Data Access 250<br>10.5 Simulating “Private” Attributes 256<br>10.6 Case Study: Card Shuffling and Dealing Simulation 258<br>10.7 Inheritance: Base Classes and Subclasses 266<br>10.8 Building an Inheritance Hierarchy; Introducing Polymorphism 267<br>10.9 Duck Typing and Polymorphism 275<br>10.10 Operator Overloading 276<br>10.11 Exception Class Hierarchy and Custom Exceptions 279<br>10.12 Named Tuples 280<br>10.13 A Brief Intro to Python 3.7’s New Data Classes 281<br>10.14 Unit Testing with Docstrings and doctest 287<br>10.15 Namespaces and Scopes 290<br>10.16 Intro to Data Science: Time Series and Simple Linear Regression 293<br>10.17 Wrap-Up 301<br><strong>Chapter 11: Natural Language Processing (NLP) 303</strong><br>11.1 Introduction 304<br>11.2 TextBlob 305<br>11.3 Visualizing Word Frequencies with Bar Charts and Word Clouds 319<br>11.4 Readability Assessment with Textatistic 324<br>11.5 Named Entity Recognition with spaCy 326<br>11.6 Similarity Detection with spaCy 327<br>11.7 Other NLP Libraries and Tools 328<br>11.8 Machine Learning and Deep Learning Natural Language Applications 328<br>11.9 Natural Language Datasets 329<br>11.10 Wrap-Up 330<br><strong>Chapter 12: Data Mining Twitter 331</strong><br>12.1 Introduction 332<br>12.2 Overview of the Twitter APIs 334<br>12.3 Creating a Twitter Account 335<br>12.4 Getting Twitter Credentials—Creating an App 335<br>12.5 What’s in a Tweet? 337<br>12.6 Tweepy 340<br>12.7 Authenticating with Twitter Via Tweepy 341<br>12.8 Getting Information About a Twitter Account 342<br>12.9 Introduction to Tweepy Cursors: Getting an Account’s Followers and Friends 344<br>12.10 Searching Recent Tweets 347<br>12.11 Spotting Trends: Twitter Trends API 349<br>12.12 Cleaning/Preprocessing Tweets for Analysis 353<br>12.13 Twitter Streaming API 354<br>12.14 Tweet Sentiment Analysis 359<br>12.15 Geocoding and Mapping 362<br>12.16 Ways to Store Tweets 370<br>12.17 Twitter and Time Series 370<br>12.18 Wrap-Up 371<br><strong>Chapter 13: IBM Watson and Cognitive Computing 373</strong><br>13.1 Introduction: IBM Watson and Cognitive Computing 374<br>13.2 IBM Cloud Account and Cloud Console 375<br>13.3 Watson Services 376<br>13.4 Additional Services and Tools 379<br>13.5 Watson Developer Cloud Python SDK 381<br>13.6 Case Study: Traveler’s Companion Translation App 381<br>13.7 Watson Resources 394<br>13.8 Wrap-Up 395<br><strong>Chapter 14: Machine Learning: Classification, Regression and Clustering 397</strong><br>14.1 Introduction to Machine Learning 398<br>14.2 Case Study: Classification with k-Nearest Neighbors and the Digits Dataset, Part 1 403<br>14.3 Case Study: Classification with k-Nearest Neighbors and the Digits Dataset, Part 2 413<br>14.4 Case Study: Time Series and Simple Linear Regression 420<br>14.5 Case Study: Multiple Linear Regression with the California Housing Dataset 425<br>14.6 Case Study: Unsupervised Machine Learning, Part 1—Dimensionality Reduction 438<br>14.7 Case Study: Unsupervised Machine Learning, Part 2—k-Means Clustering 442<br>14.8 Wrap-Up 455<br><strong>Chapter 15: Deep Learning 457</strong><br>15.1 Introduction 458<br>15.2 Keras Built-In Datasets 461<br>15.3 Custom Anaconda Environments 462<br>15.4 Neural Networks 463<br>15.5 Tensors 465<br>15.6 Convolutional Neural Networks for Vision; Multi-Classification with the MNIST Dataset 467<br>15.7 Visualizing Neural Network Training with TensorBoard 486<br>15.8 ConvnetJS: Browser-Based Deep-Learning Training and Visualization 489<br>15.9 Recurrent Neural Networks for Sequences; Sentiment Analysis with the IMDb Dataset 489<br>15.10 Tuning Deep Learning Models 497<br>15.11 Convnet Models Pretrained on ImageNet 498<br>15.12 Wrap-Up 499<br><strong>Chapter 16: Big Data: Hadoop, Spark, NoSQL and IoT 501</strong><br>16.1 Introduction 502<br>16.2 Relational Databases and Structured Query Language (SQL) 506<br>16.3 NoSQL and NewSQL Big-Data Databases: A Brief Tour 517<br>16.4 Case Study: A MongoDB JSON Document Database 520<br>16.5 Hadoop 530<br>16.6 Spark 541<br>16.7 Spark Streaming: Counting Twitter Hashtags Using the pyspark-notebook Docker Stack 551<br>16.8 Internet of Things and Dashboards 560<br>16.9 Wrap-Up 571<br>Index 573</p>

Managementboek Top 100

Rubrieken

    Personen

      Trefwoorden

        Python for Programmers